596 research outputs found

    Is the Fuzziness of GRB970228 constant?

    Get PDF
    In view of the data gathered in September 1997, we review the flux values collected so far for the "fuzziness" seen in the optical counterpart of GRB970228. Comparison between the ground based data collected in March and the data of September 1997 suggests a fading of the fuzz. Given the diversity of the data in hand, the magnitude of the effect and its significance are not easy to quantify. Only new images, both from the ground and with the Space Telescope, directly comparable to the old ones could settle this problem.Comment: 6 pages, Latex, 6 postscript figures, 1 postscript table Proceedings of the 4th Huntsville Gammma-Ray Burst Symposiu

    The near-infrared detection of PSR B0540-69 and its nebula

    Get PDF
    The ~1700 year old PSR B0540-69 in the LMC is considered the twin of the Crab pulsar because of its similar spin parameters, magnetic field, and energetics. Its optical spectrum is fit by a power-law, ascribed to synchrotron radiation, like for the young Crab and Vela pulsars. nIR observations, never performed for PSR B0540-69, are crucial to determine whether the optical power-law spectrum extends to longer wavelengths or a new break occurs, like it happens for both the Crab and Vela pulsars in the mIR, hinting at an even more complex particle energy and density distribution in the pulsar magnetosphere. We observed PSR B0540-69 in the J, H, and Ks bands with the VLT to detect it, for the first time, in the nIR and characterise its optical-to-nIR spectrum. To disentangle the pulsar emission from that of its pulsar wind nebula (PWN), we obtained high-spatial resolution adaptive optics images with NACO. We could clearly identify PSR B0540-69 in our J, H, and Ks-band images and measure its flux (J=20.14, H=19.33, Ks=18.55, with an overall error of +/- 0.1 magnitudes in each band). The joint fit to the available optical and nIR photometry with a power-law spectrum gives a spectral index alpha=0.70 +/-0.04. The comparison between our NACO images and HST optical ones does not reveal any apparent difference in the PWN morphology as a function of wavelength. The PWN optical-to-nIR spectrum is also fit by a single power-law, with spectral index alpha=0.56+/- 0.03, slightly flatter than the pulsar's. Using NACO at the VLT, we obtained the first detection of PSR B0540-69 and its PWN in the nIR. Due to the small angular scale of the PWN (~4") only the spatial resolution of the JWST will make it possible to extend the study of the pulsar and PWN spectrum towards the mid-IR.Comment: 11 pages, 10 figures, Accepted for publication on Astronomy and Astrophysic

    Neutrons from Piezonuclear Reactions

    Full text link
    We report the results obtained by cavitating water solutions of iron salts (iron chloride and iron nitrate) with different concentrations at different ultrasound powers. In all cases we detected a neutron radiation well higher than the background level. The neutron production is perfectly reproducible and can at some extent be controlled. These evidences for neutron emission generated by cavitation support some preliminary clues for the possibility of piezonuclear reactions (namely nuclear reactions induced by pressure and shock waves) obtained in the last ten years. We have been able for the first time to state some basic features of such a neutron emission induced by cavitation, namely: 1) a marked threshold behavior in power, energy and time; 2) its occurring without a concomitant production of gamma radiation.Comment: 8 figures; we added some more important references; we replaced some figures with more detailed ones; we added more comprehensive details which could not be desclosed before as part of private patents which have been published no

    HST and VLT observations of the neutron star 1E 1207.4-5209

    Full text link
    1E 1207.4-5209, the peculiar Central Compact object in the G296.5+10.0 supernova remnant, has been proposed to be an "anti-magnetar" - a young neutron star born with a weak dipole field. Accretion, possibly of supernova fallback material, has also been invoked to explain a large surface temperature anisotropy as well as the generation of peculiar cyclotron absorption features superimposed to its thermal spectrum. Interestingly enough, a faint optical/infrared source was proposed as a possible counterpart to 1E 1207.4-5209, but later questioned, based on coarse positional coincidence. Considering the large offset of 1E 1207.4-5209 with respect to the center of its host supernova remnant, the source should move at ~70 mas/yr. Thus, we tested the association by measuring the proper motion of the proposed optical counterpart. Using HST observations spanning 3.75 years, we computed a 3 sigma upper limit of 7 mas/yr. Absolute astrometry on the same HST data set also places the optical source significantly off the 99% confidence Chandra position. This allows us to safely rule out the association. Using the HST data set, coupled to ground-based observations collected at the ESO/VLT, we set the deepest limits ever obtained to the optical/infrared emission from 1E 1207.4-5209. By combining such limits to the constraints derived from X-ray timing, we rule out accretion as the source of the thermal anisotropy of the neutron star.Comment: 8 pages, 3 figures. Accepted for publication in Astronomy & Astrophysic
    • …
    corecore