116 research outputs found

    Mental Health Referral in Primary Care: Influence of a Screening Instrument and a Brief Educational Intervention

    Get PDF
    Although less than half of all patients with mental disorders seek mental health treatment per se, approximately 80% of all people will visit their primary care physician (PCPs) within a year (Strosahl, 1998). However, it is not well understood how to best handle patients presenting with mental health issues in primary care practices. The purpose of this project was to implement an intervention involving a screening measure for anxiety and mood disorders in a primary care setting to increase the volume of anxiety and mood disorder screening, to increase the accuracy of disorder detection, and to also enhance PCPs patterns of referral to mental health professionals (MHPs). Though starting with a quantitative design, difficulties encountered throughout the project eventually led to a largely qualitative analysis, which did yield useful information. A pilot project demonstrated anxiety and mood disorders were commonly noted in patients’ medical charts (46%), but also found referrals were rarely made for mental health services (7%), despite colocation of a licensed psychologist and licensed clinical social worker within the practice. This indicated that services available to provide comprehensive integrated total health care may not be have been used to their full potential. In the main project, 59 participants from a family medicine clinic and 20 PCPs from that clinic participated. The My Mood Monitor (M3) was administered to the patients and became part of their Electronic Medical Records (EMR). The M3 screens for anxiety, depression, and bipolar disorders within primary care settings. In 2 separate noon conferences, PCPs were trained on diagnostic criteria for anxiety disorders and mood disorders, interpretation of M3 results, and the internal Mental Health Professional referral process. The project was hampered by a full-scale switch from paper-based medical records to an EMR and accompanying lack of user experience with EMR functions, lack of efficient transfer of M3 results into the EMR, and an unforeseen switch of psychologists mid-way through the study. However, results were obtained that showed relatively low levels of PCP review of M3 results, potentially high rates of anxiety disorders and mood disorders within the setting, relatively high levels of PCP knowledge of diagnostic criteria for anxiety and mood disorders, and that patients may not prefer a ‘warm handoff’ model of mental health referral. These findings are couched within a number of important caveats, but future directions for research were clearly implied

    Exact Eigenstates and Magnetic Response of Spin-1 and Spin-2 Vectorial Bose-Einstein Condensates

    Full text link
    The exact eigenspectra and eigenstates of spin-1 and spin-2 vectorial Bose-Einstein condensates (BECs) are found, and their response to a weak magnetic field is studied and compared with their mean-field counterparts. Whereas mean-field theory predicts the vanishing population of the zero magnetic-quantum-number component of a spin-1 antiferromagnetic BEC, the component is found to become populated as the magnetic field decreases. The spin-2 BEC exhibits an even richer magnetic response due to quantum correlation between 3 bosons.Comment: 5 pages, no figures. LaTeX20

    Theory of spin-2 Bose-Einstein condensates: spin-correlations, magnetic response, and excitation spectra

    Full text link
    The ground states of Bose-Einstein condensates of spin-2 bosons are classified into three distinct (ferromagnetic, ^^ ^^ antiferromagnetic", and cyclic) phases depending on the s-wave scattering lengths of binary collisions for total-spin 0, 2, and 4 channels. Many-body spin correlations and magnetic response of the condensate in each of these phases are studied in a mesoscopic regime, while low-lying excitation spectra are investigated in the hermodynamic regime. In the mesoscopic regime, where the system is so tightly confined that the spatial degrees of freedom are frozen, the exact, many-body ground state for each phase is found to be expressed in terms of the creation operators of pair or trio bosons having spin correlations. These pairwise and trio-wise units are shown to bring about some unique features of spin-2 BECs such as a huge jump in magnetization from minimum to maximum possible values and the robustness of the minimum-magnetization state against an applied agnetic field. In the thermodynamic regime, where the system is spatially uniform, low-lying excitation spectra in the presence of magnetic field are obtained analytically using the Bogoliubov approximation. In the ferromagnetic phase, the excitation spectrum consists of one Goldstone mode and four single-particle modes. In the antiferromagnetic phase, where spin-singlet ^^ ^^ pairs" undergo Bose-Einstein condensation, the spectrum consists of two Goldstone modes and three massive ones, all of which become massless when magnetic field vanishes. In the cyclic phase, where boson ^^ ^^ trios" condense into a spin-singlet state, the spectrum is characterized by two Goldstone modes, one single-particle mode having a magnetic-field-independent energy gap, and a gapless single-particle mode that becomes massless in the absence of magnetic field.Comment: 28 pages, 4 figure

    Некоторые результаты применения метода геометрического анализа дизъюнктов для поисков смещенного крыла пласта в Прокопьевском районе Кузбасса

    Get PDF
    In this paper we present the development of a compact, thermo-optically stable and vibration and mechanical shock resistant mounting technique by soldering of optical components. Based on this technique, new generations of laser pump sources for aerospace applications are designed. In these laser systems the used soldering technique replaces the glued connection between the optical component and its join partner. The main challenges are the alignment accuracy in the arc second range and the realization of the long term stability of every single part in the laser system (e.g. resonator mirrors)

    О необходимости прослеживания Балейско-Дарасунского разлома в пределах Борщевочного кряжа

    Get PDF
    In this paper we present the development of a compact, thermo-optically stable and vibration and mechanical shock resistant mounting technique by soldering of optical components. Based on this technique a new generation of laser sources for aerospace applications is designed. In these laser systems solder technique replaces the glued and bolted connections between optical component, mount and base plate. Alignment precision in the arc second range and realization of long term stability of every single part in the laser system is the main challenge. At the Fraunhofer Institute for Laser Technology ILT a soldering and mounting technique has been developed for high precision packaging. The specified environmental boundary conditions (e.g. a temperature range of -40 °C to +50 °C) and the required degrees of freedom for the alignment of the components have been taken into account for this technique. In general the advantage of soldering compared to gluing is that there is no outgassing. In addition no flux is needed in our special process. The joining process allows multiple alignments by remelting the solder. The alignment is done in the liquid phase of the solder by a 6 axis manipulator with a step width in the nm range and a tilt in the arc second range. In a next step the optical components have to pass the environmental tests. The total misalignment of the component to its adapter after the thermal cycle tests is less than 10 arc seconds. The mechanical stability tests regarding shear, vibration and shock behavior are well within the requirements

    Dynamics of spin-2 Bose condensate driven by external magnetic fields

    Get PDF
    Dynamic response of the F=2 spinor Bose-Einstein condensate (BEC) under the influence of external magnetic fields is studied. A general formula is given for the oscillation period to describe population transfer from the initial polar state to other spin states. We show that when the frequency and the reduced amplitude of the longitudinal magnetic field are related in a specific manner, the population of the initial spin-0 state will be dynamically localized during time evolution. The effects of external noise and nonlinear spin exchange interaction on the dynamics of the spinor BEC are studied. We show that while the external noise may eventually destroy the Rabi oscillations and dynamic spin localization, these coherent phenomena are robust against the nonlinear atomic interaction.Comment: 16 pages, 7 figures. accepted by Phys. Rev.

    Protective Enterotoxigenic Escherichia coli Antigens in a Murine Intranasal Challenge Model

    Get PDF
    Citation: Kumar, A., Hays, M., Lim, F., Foster, L. J., Zhou, M. X., Zhu, G. Q., . . . Hardwidge, P. R. (2015). Protective Enterotoxigenic Escherichia coli Antigens in a Murine Intranasal Challenge Model. Plos Neglected Tropical Diseases, 9(8), 16. doi:10.1371/journal.pntd.0003924Enterotoxigenic Escherichia coli (ETEC) is an endemic health threat in underdeveloped nations. Despite the significant effort extended to vaccine trials using ETEC colonization factors, these approaches have generally not been especially effective in mediating cross-protective immunity. We used quantitative proteomics to identify 24 proteins that differed in abundance in membrane protein preparations derived from wild-type vs. a type II secretion system mutant of ETEC. We expressed and purified a subset of these proteins and identified nine antigens that generated significant immune responses in mice. Sera from mice immunized with either the MltA-interacting protein MipA, the periplasmic chaperone seventeen kilodalton protein, Skp, or a long-chain fatty acid outer membrane transporter, ETEC_2479, reduced the adherence of multiple ETEC strains differing in colonization factor expression to human intestinal epithelial cells. In intranasal challenge assays of mice, immunization with ETEC_ 2479 protected 88% of mice from an otherwise lethal challenge with ETEC H10407. Immunization with either Skp or MipA provided an intermediate degree of protection, 68 and 64%, respectively. Protection was significantly correlated with the induction of a secretory immunoglobulin A response. This study has identified several proteins that are conserved among heterologous ETEC strains and may thus potentially improve cross- protective efficacy if incorporated into future vaccine designs

    Quantum tunneling across spin domains in a Bose-Einstein condensate

    Full text link
    Quantum tunneling was observed in the decay of metastable spin domains in gaseous Bose-Einstein condensates. A mean-field description of the tunneling was developed and compared with measurement. The tunneling rates are a sensitive probe of the boundary between spin domains, and indicate a spin structure in the boundary between spin domains which is prohibited in the bulk fluid. These experiments were performed with optically trapped F=1 spinor Bose-Einstein condensates of sodium.Comment: 5 pages, 4 figure

    Bose-Einstein condensation in shallow traps

    Full text link
    In this paper we study the properties of Bose-Einstein condensates in shallow traps. We discuss the case of a Gaussian potential, but many of our results apply also to the traps having a small quadratic anharmonicity. We show the errors introduced when a Gaussian potential is approximated with a parabolic potential, these errors can be quite large for realistic optical trap parameter values. We study the behavior of the condensate fraction as a function of trap depth and temperature and calculate the chemical potential of the condensate in a Gaussian trap. Finally we calculate the frequencies of the collective excitations in shallow spherically symmetric and 1D traps.Comment: 6 pages, 4 figure

    Spin dynamics of a trapped spin-1 Bose Gas above the Bose-Einstein transition temperature

    Full text link
    We study collective spin oscillations in a spin-1 Bose gas above the Bose-Einstein transition temperature. Starting from the Heisenberg equation of motion, we derive a kinetic equation describing the dynamics of a thermal gas with the spin-1 degree of freedom. Applying the moment method to the kinetic equation, we study spin-wave collective modes with dipole symmetry. The dipole modes in the spin-1 system are found to be classified into the three type of modes. The frequency and damping rate are obtained as functions of the peak density. The damping rate is characterized by three relaxation times associated with collisions.Comment: 19 pages, 5 figur
    corecore