2,345 research outputs found
Critical neural networks with short and long term plasticity
In recent years self organised critical neuronal models have provided
insights regarding the origin of the experimentally observed avalanching
behaviour of neuronal systems. It has been shown that dynamical synapses, as a
form of short-term plasticity, can cause critical neuronal dynamics. Whereas
long-term plasticity, such as hebbian or activity dependent plasticity, have a
crucial role in shaping the network structure and endowing neural systems with
learning abilities. In this work we provide a model which combines both
plasticity mechanisms, acting on two different time-scales. The measured
avalanche statistics are compatible with experimental results for both the
avalanche size and duration distribution with biologically observed percentages
of inhibitory neurons. The time-series of neuronal activity exhibits temporal
bursts leading to 1/f decay in the power spectrum. The presence of long-term
plasticity gives the system the ability to learn binary rules such as XOR,
providing the foundation of future research on more complicated tasks such as
pattern recognition.Comment: 8 pages, 7 figure
Synthetic reconstruction of extreme high hydrostatic pressure resistance in Escherichia coli
Although high hydrostatic pressure (HHP) is an interesting parameter to be applied in bioprocessing, its potential is currently limited by the lack of bacterial chassis capable of surviving and maintaining homeostasis under pressure. While several efforts have been made to genetically engineer microorganisms able to grow at sublethal pressures, there is little information for designing backgrounds that survive more extreme pressures. In this investigation, we analyzed the genome of an extreme HHP-resistant mutant of E. coli MG1655 (designated as DVL1), from which we identified four mutations (in the cra, cyaA, aceA and rpoD loci) causally linked to increased HHP resistance. Analysing the functional effect of these mutations we found that the coupled effect of downregulation of cAMP/CRP, Cra and the glyoxylate shunt activity, together with the upregulation of RpoH and RpoS activity, could mechanistically explain the increased HHP resistance of the mutant. Using combinations of three mutations, we could synthetically engineer E. coli strains able to comfortably survive pressures of 600-800 MPa, which could serve as genetic backgrounds for HHP-based biotechnological applications
Effects of precision farming, N rate, and temporal trends on wheat yield and productivity
Non-Peer Reviewe
Rare earth chalcogenides for use as high temperature thermoelectric materials
In the first part of the thesis, the electric resistivity, Seebeck coefficient, and Hall effect were measured in X{sub y}(Y{sub 2}S{sub 3}){sub 1-y} (X = Cu, B, or Al), for y = 0.05 (Cu, B) or 0.025-0.075 for Al, in order to determine their potential as high- temperature (HT)(300-1000 C) thermoelectrics. Results indicate that Cu, B, Al- doped Y{sub 2}S{sub 3} are not useful as HT thermoelectrics. In the second part, phase stability of {gamma}-cubic LaSe{sub 1.47-1.48} and NdSe{sub 1.47} was measured periodically during annealing at 800 or 1000 C for the same purpose. In the Nd selenide, {beta} phase increased with time, while the Nd selenide showed no sign of this second phase. It is concluded that the La selenide is not promising for use as HT thermoelectric due to the {gamma}-to-{beta} transformation, whereas the Nd selenide is promising
Parthenogenetic flatworms have more symbionts than their coexisting, sexual conspecifics, but does this support the Red Queen?
The Red Queen hypothesis predicts that sexuality is favoured when virulent parasites adapt quickly to host genotypes. We studied a population of the flatworm Schmidtea polychroa in which obligate sexual and parthenogenetic individuals coexist. Infection rates by an amoeboid protozoan were consistently higher in parthenogens than in sexuals. Allozyme analysis showed that infection was genotype specific, with the second most common clone most infected. A laboratory measurement of fitness components failed to reveal high infection costs as required for the Red Queen. Although fertility was lower in more infected parthenogens, this effect can also be explained by the accumulation of mutations. We discuss these and other characteristics of our model system that may explain how a parasite with low virulence can show this pattern
Recommended from our members
Rare earth chalcogenides for use as high temperature thermoelectric materials
In the first part of the thesis, the electric resistivity, Seebeck coefficient, and Hall effect were measured in X{sub y}(Y{sub 2}S{sub 3}){sub 1-y} (X = Cu, B, or Al), for y = 0.05 (Cu, B) or 0.025-0.075 for Al, in order to determine their potential as high- temperature (HT)(300-1000 C) thermoelectrics. Results indicate that Cu, B, Al- doped Y{sub 2}S{sub 3} are not useful as HT thermoelectrics. In the second part, phase stability of {gamma}-cubic LaSe{sub 1.47-1.48} and NdSe{sub 1.47} was measured periodically during annealing at 800 or 1000 C for the same purpose. In the Nd selenide, {beta} phase increased with time, while the Nd selenide showed no sign of this second phase. It is concluded that the La selenide is not promising for use as HT thermoelectric due to the {gamma}-to-{beta} transformation, whereas the Nd selenide is promising
Inhibition of HIV virus by neutralizing Vhh attached to dual functional liposomes encapsulating dapivirine
Although highly active antiretroviral therapy (HAART) has greatly improved the life expectancy of HIV/AIDS patients, the treatment is not curative. It is a global challenge which fosters an urgent need to develop an effective drug or neutralizing antibody delivery approach for the prevention and treatment of this disease. Due to the low density of envelope spikes with restricted mobility present on the surface of HIV virus, which limit the antibody potency and allow virus mutation and escape from the immune system, it is important for a neutralizing antibody to form bivalent or multivalent bonds with the virus. Liposome constructs could fulfil this need due to the flexible mobility of the membrane with its attached antibodies and the capacity for drug encapsulation. In this study, we evaluated the neutralization activity of a range of liposome formulations in different sizes coated with anti-gp120 llama antibody fragments (Vhhs) conjugated via either non-covalent metal chelation or a covalent linkage. The non-covalent construct demonstrated identical binding affinity to HIV-1 envelope glycoprotein gp120 and neutralizing ability for HIV virus as free Vhh. Although covalently linked Vhh showed significant binding affinity to gp120, it unexpectedly had a lower neutralization potency. This may be due to the comparability in size of the viral and liposome particles restricting the number which can be bound to the liposome surface so involving only a fraction of the antibodies, whereas non-covalently attached antibodies dissociate from the surface after acting with gp120 and free the remainder to bind further viruses. Covalently conjugated Vhh might also trigger the cellular uptake of a liposome-virion complex. To explore the possible ability of the antibody-coated liposomes to have a further function, we encapsulated the hydrophobic antiviral drug dapivirine into both of the non-covalently and covalently conjugated liposome formulations, both of which revealed high efficacy in reducing viral replication in vitro. Thus, dual function liposomes may lead to a novel strategy for the prophylaxis of HIV/AIDS by combining the neutralizing activity of Vhh with antiviral effects of high drug concentrations
Humoral Response Induced by Prime-Boost Vaccination with the ChAdOx1 nCoV-19 and mRNA BNT162b2 Vaccines in a Teriflunomide-Treated Multiple Sclerosis Patient.
Patients with multiple sclerosis (MS) are treated with drugs that may impact immune responses to SARS-CoV-2 vaccination. Evaluation of "prime-boost" (heterologous) vaccination regimens including a first administration of a viral vector-based vaccine and a second one of an mRNA-based vaccine in such patients has not yet been completed. Here, we present the anti-spike protein S humoral response, including the neutralizing antibody response, in a 54-year-old MS patient who had been treated with teriflunomide for the past 2 years and who received a heterologous ChAdOx1 nCoV-19/ BNT162b2 vaccination regimen. The results showed a very strong anti-S IgG response and a good neutralizing antibody response. These results show that teriflunomide did not prevent the development of a satisfactory humoral response in this MS patient after vaccination with a ChAdOx1 nCoV-19/ BNT162b2 prime-boost protocol
- …