224 research outputs found
Geluidsproducrie bij vogels
The syrinx plays an important role in the sound production of birds. Its most important structures are the labia and the lateral tympaniform membranes that produce sound by vibrating during expiration. Since the left and right sides of the syrinx are innervated independently from each other, two sound sources are present which can act either simultaneously or separately with one side acting as sound source and the other side as air inlet. The bird's song is generated in specific neural brain centres via a seamless synchronization of the respiration and the muscles of the upper respiratory tract, the trachea and the syrinx. Hormones also play a role by influencing the volume of the brain centres in relation to the season. The acquisition of the bird's song starts with a sensory phase in which the juvenile bird learns the species specific song, and is followed by a sensorimotor phase during which the young bird fine-tunes its song via auditory feedback
Artificial rearing influences the morphology, permeability and redox state of the gastrointestinal tract of low and normal birth weight piglets
Background: In this study the physiological implications of artificial rearing were investigated. Low (LBW) and normal birth weight (NBW) piglets were compared as they might react differently to stressors caused by artificial rearing. In total, 42 pairs of LBW and NBW piglets from 16 litters suckled the sow until d19 of age or were artificially reared starting at d3 until d19 of age. Blood and tissue samples that were collected after euthanasia at 0, 3, 5, 8 and 19 d of age. Histology, ELISA, and Ussing chamber analysis were used to study proximal and distal small intestine histo-morphology, proliferation, apoptosis, tight junction protein expression, and permeability. Furthermore, small intestine, liver and systemic redox parameters (GSH, GSSG, GSH-Px and MDA) were investigated using HPLC.
Results: LBW and NBW artificially reared piglets weighed respectively 40 and 33% more than LBW and NBW sow-reared piglets at d19 (P < 0.01). Transferring piglets to a nursery at d3 resulted in villus atrophy, increased intestinal FD-4 and HRP permeability and elevated GSSG/GSH ratio in the distal small intestine at d5 (P < 0.05). GSH concentrations in the proximal small intestine remained stable, while they decreased in the liver (P < 0.05). From d5 until d19, villus width and crypt depth increased, whereas PCNA, caspase-3, occludin and claudin-3 protein expressions were reduced. GSH, GSSG and permeability recovered in artificially reared piglets (P < 0.05).
Conclusion: The results suggest that artificial rearing altered the morphology, permeability and redox state without compromising piglet performance. The observed effects were not depending on birth weight
Pro-active positioning of a social robot intervening upon behavioral disturbances of persons with dementia in a smart nursing home
Behavioral disturbances of persons with dementia residing in a nursing home impose a significant burden on other residents and on the care staff. A social robot can provide an adequate technological support tool for the caregivers by approaching a resident that exhibits a behavioral disturbance. In this paper, we focus on how to position the robot in the nursing home, taking into account the profile and location of the residents. We minimize the time between the detection of a behavioral disturbance and the robot having arrived near the resident and starting an interaction scenario. Our algorithm is evaluated using realistic data that was collected during 3 months in two Belgian nursing homes. (C) 2019 Elsevier B.V. All rights reserved
In vitro investigation of six antioxidants for pig diets
Oxidative stress in the small intestinal epithelium can lead to barrier malfunction. In this study, the effect of rosmarinic acid (RA), quercetin (Que), gallic acid (GA), lipoic acid (LA), ethoxyquin (ETQ) and Se-methionine (SeMet) pre-treatments using 2 mM Trolox as a control on the viability and the generation of intracellular reactive oxygen species (iROS) of oxidatively (H2O2) stressed intestinal porcine epithelial cells (IPEC-J2) was investigated. A neutral red assay showed that RA (50-400 mu M), Que (12.5-200 mu M), GA (50-400 mu M), ETQ (6.25-100 mu M), and SeMet (125-1000 mu M) pre-treatments but not LA significantly increased the viability of H2O2-stressed IPEC-J2 cells (p < 0.05). A 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate, acetyl ester (CM-H(2)DCFDA) fluorescent probe showed that RA (100-600 mu M), Que (25-800 mu M), ETQ (3.125-100 mu M) and SeMet (500-2000 mu M) pre-treatments significantly reduced iROS in IPEC-J2 monolayers (p < 0.05). Moreover, RA and Que were most effective in reducing iROS. Therefore, the effects of RA and Que on barrier functioning in vitro were examined. RA and Que pre-treatments significantly decreased fluorescein isothiocyanate (FITC)-conjugated dextran-4 (4 kDa) permeability and transepithelial electrical resistance (TEER) of an IPEC-J2 cell monolayer (p < 0.05). These in vitro results of RA and Que hold promise for their use as antioxidants in pig feed
Efficacy of three innovative bacterin vaccines against experimental infection with Mycoplasma hyopneumoniae
International audienceAbstractNew vaccine formulations that include novel strains of Mycoplasma hyopneumoniae and innovative adjuvants designed to induce cellular immunity could improve vaccine efficacy against this pathogen. The aim of this experimental study was to assess the efficacy of three experimental bacterin formulations based on M. hyopneumoniae field strain F7.2C which were able to induce cellular immunity. The formulations included a cationic liposome formulation with the Mincle receptor ligand trehalose 6,6-dibehenate (Lipo_DDA:TDB), a squalene-in-water emulsion with Toll-like receptor (TLR) ligands targeting TLR1/2, TLR7/8 and TLR9 (SWE_TLR), and a poly(lactic-co-glycolic acid) micro-particle formulation with the same TLR ligands (PLGA_TLR). Four groups of 12 M. hyopneumoniae-free piglets were primo- (day (D) 0; 39 days of age) and booster vaccinated (D14) intramuscularly with either one of the three experimental bacterin formulations or PBS. The pigs were endotracheally inoculated with a highly and low virulent M. hyopneumoniae strain on D28 and D29, respectively, and euthanized on D56. The main efficacy parameters were: respiratory disease score (RDS; daily), macroscopic lung lesion score (D56) and log copies M. hyopneumoniae DNA determined with qPCR on bronchoalveolar lavage (BAL) fluid (D42, D56). All formulations were able to reduce clinical symptoms, lung lesions and the M. hyopneumoniae DNA load in the lung, with formulation SWE_TLR being the most effective (RDSD28–D56 −61.90%, macroscopic lung lesions −88.38%, M. hyopneumoniae DNA load in BAL fluid (D42) −67.28%). Further experiments raised under field conditions are needed to confirm these results and to assess the effect of the vaccines on performance parameters
Low level of Fibrillarin, a ribosome biogenesis factor, is a new independent marker of poor outcome in breast cancer
International audienceBackground: A current critical need remains in the identification of prognostic and predictive markers in early breast cancer. It appears that a distinctive trait of cancer cells is their addiction to hyperactivation of ribosome biogenesis. Thus, ribosome biogenesis might be an innovative source of biomarkers that remains to be evaluated. Methods: Here, fibrillarin (FBL) was used as a surrogate marker of ribosome biogenesis due to its essential role in the early steps of ribosome biogenesis and its association with poor prognosis in breast cancer when overexpressed. Using 3,275 non-metastatic primary breast tumors, we analysed FBL mRNA expression levels and protein nucleolar organisation. Usage of TCGA dataset allowed transcriptomic comparison between the different FBL expression levelsrelated breast tumours. Results: We unexpectedly discovered that in addition to breast tumours expressing high level of FBL, about 10% of the breast tumors express low level of FBL. A correlation between low FBL mRNA level and lack of FBL detection at protein level using immunohistochemistry was observed. Interestingly, multivariate analyses revealed that these low FBL tumors displayed poor outcome compared to current clinical gold standards. Transcriptomic data revealed that FBL expression is proportionally associated with distinct amount of ribosomes, low FBL level being associated with low amount of ribosomes. Moreover, the molecular programs supported by low and high FBL expressing tumors were distinct. Conclusion: Altogether, we identified FBL as a powerful ribosome biogenesis-related independent marker of breast cancer outcome. Surprisingly we unveil a dual association of the ribosome biogenesis FBL factor with prognosis. These data suggest that hyper-but also hypo-activation of ribosome biogenesis are molecular traits of distinct tumors
PPARβ activation inhibits melanoma cell proliferation involving repression of the Wilms’ tumour suppressor WT1
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that strongly influence molecular signalling in normal and cancer cells. Although increasing evidence suggests a role of PPARs in skin carcinogenesis, only expression of PPARγ has been investigated in human melanoma tissues. Activation of PPARα has been shown to inhibit the metastatic potential, whereas stimulation of PPARγ decreased melanoma cell proliferation. We show here that the third member of the PPAR family, PPARβ/δ is expressed in human melanoma samples. Specific pharmacological activation of PPARβ using GW0742 or GW501516 in low concentrations inhibits proliferation of human and murine melanoma cells. Inhibition of proliferation is accompanied by decreased expression of the Wilms’ tumour suppressor 1 (WT1), which is implicated in melanoma proliferation. We demonstrate that PPARβ directly represses WT1 as (1) PPARβ activation represses WT1 promoter activity; (2) in chromatin immunoprecipitation and electrophoretic mobility shift assays, we identified a binding element for PPARβ in the WT1 promoter; (3) deletion of this binding element abolishes repression by PPARβ and (4) the WT1 downstream molecules nestin and zyxin are down-regulated upon PPARβ activation. Our findings elucidate a novel mechanism of signalling by ligands of PPARβ, which leads to suppression of melanoma cell growth through direct repression of WT1
Hybrid Shell Engineering of Animal Cells for Immune Protections and Regulation of Drug Delivery: Towards the Design of “Artificial Organs”
BACKGROUND: With the progress in medicine, the average human life expectancy is continuously increasing. At the same time, the number of patients who require full organ transplantations is augmenting. Consequently, new strategies for cell transplantation are the subject of great interest. METHODOLOGY/PRINCIPAL FINDINGS: This work reports the design, the synthesis and the characterisation of robust and biocompatible mineralised beads composed of two layers: an alginate-silica composite core and a Ca-alginate layer. The adequate choice of materials was achieved through cytotoxicity LDH release measurement and in vitro inflammatory assay (IL-8) to meet the biocompatibility requirements for medical purpose. The results obtained following this strategy provide a direct proof of the total innocuity of silica and alginate networks for human cells as underscored by the non-activation of immune defenders (THP-1 monocytes). The accessible pore size diameter of the mineralised beads synthesized was estimated between 22 and 30 nm, as required for efficient immuno-isolation without preventing the diffusion of nutrients and metabolites. The model human cells, HepG2, entrapped within these hybrid beads display a high survival rate over more than six weeks according to the measurements of intracellular enzymatic activity, respiration rate, as well as the "de novo" biosynthesis and secretion of albumin out of the beads. CONCLUSIONS/SIGNIFICANCE: The current study shows that active mammalian cells can be protected by a silica-alginate hybrid shell-like system. The functionality of the cell strain can be maintained. Consequently, cells coated with an artificial and a biocompatible mineral shell could respond physiologically within the human body in order to deliver therapeutic agents in a controlled fashion (i.e. insulin), substituting the declining organ functions of the patient
- …