41 research outputs found

    Honey bee foraging distance depends on month and forage type

    Get PDF
    To investigate the distances at which honey bee foragers collect nectar and pollen, we analysed 5,484 decoded waggle dances made to natural forage sites to determine monthly foraging distance for each forage type. Firstly, we found significantly fewer overall dances made for pollen (16.8 %) than for non-pollen, presumably nectar (83.2 %; P < 2.2 × 10−23). When we analysed distance against month and forage type, there was a significant interaction between the two factors, which demonstrates that in some months, one forage type is collected at farther distances, but this would reverse in other months. Overall, these data suggest that distance, as a proxy for forage availability, is not significantly and consistently driven by need for one type of forage over the other

    Toll-Like Receptor-2 Mediates Diet and/or Pathogen Associated Atherosclerosis: Proteomic Findings

    Get PDF
    BACKGROUND. Accumulating evidence implicates a fundamental link between the immune system and atherosclerosis. Toll-like receptors are principal sensors of the innate immune system. Here we report an assessment of the role of the TLR2 pathway in atherosclerosis associated with a high-fat diet and/or bacteria in ApoE+/- mice. METHODS AND RESULTS. To explore the role of TLR2 in inflammation- and infection-associated atherosclerosis, 10 week-old ApoE+/--TLR2+/+, ApoE+/--TLR2+/- and ApoE+/--TLR2-/- mice were fed either a high fat diet or a regular chow diet. All mice were inoculated intravenously, once per week for 24 consecutive weeks, with 50 μl live Porphyromonas gingivalis (P.g) (107 CFU) or vehicle (normal saline). Animals were euthanized 24 weeks after the first inoculation. ApoE+/--TLR2+/+ mice showed a significant increase in atheromatous lesions in proximal aorta and aortic tree compared to ApoE+/--TLR2+/- and ApoE+/--TLR2-/- mice for all diet conditions. They also displayed profound changes in plaque composition, as evidenced by increased macrophage infiltration and apoptosis, increased lipid content, and decreased smooth muscle cell mass, all reflecting an unstable plaque phenotype. SAA levels from ApoE+/--TLR2+/+ mice were significantly higher than from ApoE+/--TLR2+/- and ApoE+/--TLR2-/- mice. Serum cytokine analysis revealed increased levels of pro-inflammatory cytokines in ApoE+/--TLR2+/+ mice compared to ApoE+/--TLR2+/- and TLR2-/- mice, irrespective of diet or bacterial challenge. ApoE+/--TLR2+/+ mice injected weekly for 24 weeks with FSL-1 (a TLR2 agonist) also demonstrated significant increases in atherosclerotic lesions, SAA and serum cytokine levels compared to ApoE+/--TLR2-/- mice under same treatment condition. Finally, mass-spectrometry (MALDI-TOF-MS) of aortic samples analyzed by 2-dimentional gel electrophoresis differential display, identified 6 proteins upregulated greater than 2-fold in ApoE+/--TLR2+/+ mice fed the high fat diet and inoculated with P.g compared to any other group. CONCLUSION. Genetic deficiency of TLR2 reduces diet- and/or pathogen-associated atherosclerosis in ApoE+/- mice, along with differences in plaque composition suggesting greater structural stability while TLR-2 ligand-specific activation triggers atherosclerosis. The present data offers new insights into the pathophysiological pathways involved in atherosclerosis and paves the way for new pharmacological interventions aimed at reducing atherosclerosis.National Heart, Lung, and Blood Institute (R01 HL076801

    Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles

    Get PDF
    Release of membrane vesicles, a process conserved in both prokaryotes and eukaryotes, represents an evolutionary link, and suggests essential functions of a dynamic extracellular vesicular compartment (including exosomes, microparticles or microvesicles and apoptotic bodies). Compelling evidence supports the significance of this compartment in a broad range of physiological and pathological processes. However, classification of membrane vesicles, protocols of their isolation and detection, molecular details of vesicular release, clearance and biological functions are still under intense investigation. Here, we give a comprehensive overview of extracellular vesicles. After discussing the technical pitfalls and potential artifacts of the rapidly emerging field, we compare results from meta-analyses of published proteomic studies on membrane vesicles. We also summarize clinical implications of membrane vesicles. Lessons from this compartment challenge current paradigms concerning the mechanisms of intercellular communication and immune regulation. Furthermore, its clinical implementation may open new perspectives in translational medicine both in diagnostics and therapy

    The SARS-CoV-2 Alpha variant was associated with increased clinical severity of COVID-19 in Scotland: A genomics-based retrospective cohort analysis

    Get PDF
    Objectives The SARS-CoV-2 Alpha variant was associated with increased transmission relative to other variants present at the time of its emergence and several studies have shown an association between Alpha variant infection and increased hospitalisation and 28-day mortality. However, none have addressed the impact on maximum severity of illness in the general population classified by the level of respiratory support required, or death. We aimed to do this. Methods In this retrospective multi-centre clinical cohort sub-study of the COG-UK consortium, 1475 samples from Scottish hospitalised and community cases collected between 1st November 2020 and 30th January 2021 were sequenced. We matched sequence data to clinical outcomes as the Alpha variant became dominant in Scotland and modelled the association between Alpha variant infection and severe disease using a 4-point scale of maximum severity by 28 days: 1. no respiratory support, 2. supplemental oxygen, 3. ventilation and 4. death. Results Our cumulative generalised linear mixed model analyses found evidence (cumulative odds ratio: 1.40, 95% CI: 1.02, 1.93) of a positive association between increased clinical severity and lineage (Alpha variant versus pre-Alpha variants). Conclusions The Alpha variant was associated with more severe clinical disease in the Scottish population than co-circulating lineages

    TLR/MyD88 and liver X receptor alpha signaling pathways reciprocally control Chlamydia pneumoniae-induced acceleration of atherosclerosis.

    No full text
    Experimental and clinical studies link Chlamydia pneumoniae infection to atherogenesis and atherothrombotic events, but the underlying mechanisms are unclear. We tested the hypothesis that C. pneumoniae-induced acceleration of atherosclerosis in apolipoprotein E (ApoE)(-/-) mice is reciprocally modulated by activation of TLR-mediated innate immune and liver X receptor alpha (LXR alpha) signaling pathways. We infected ApoE(-/-) mice and ApoE(-/-) mice that also lacked TLR2, TLR4, MyD88, or LXRa intranasally with C pneumoniae followed by feeding of a high fat diet for 4 mo. Mock-infected littermates served as controls. Atherosclerosis was assessed in aortic sinuses and in en face preparation of whole aorta. The numbers of activated dendritic cells (DCs) within plaques and the serum levels of cholesterol and proinflammatory cytokines were also measured. C. pneumoniae infection markedly accelerated atherosclerosis in ApoE-deficient mice that was associated with increased numbers of activated DCs in aortic sinus plaques and higher circulating levels of MCP-1, IL-12p40, IL-6, and TNF-alpha. In contrast, C. pneumoniae infection had only a minimal effect on atherosclerosis, accumulation of activated DCs in the sinus plaques, or circulating cytokine increases in ApoE(-/-) mice that were also deficient in TLR2, TLR4, or MyD88. However, C. pneumoniae-induced acceleration of atherosclerosis in ApoE(-/-) mice was further enhanced in ApoE(-/-)LXR alpha(-/-) double knockout mice and was accompanied by higher serum levels of IL-6 and TNF-a. We conclude that C. pneumoniae infection accelerates atherosclerosis in hypercholesterolemic mice predominantly through a TLR/MyD88-dependent mechanism and that LXR alpha appears to reciprocally modulate and reduce the proatherogenic effects of C. pneumoniae infection
    corecore