171 research outputs found

    Trk: a neuromodulator of age-specific behavioral and neurochemical responses to cocaine in mice.

    Get PDF
    Responses to psychostimulants vary with age, but the molecular etiologies of these differences are largely unknown. The goal of the present research was to identify age-specific behavioral and molecular adaptations to cocaine and to elucidate the mechanisms involved therein. Postweanling, periadolescent, and adult male CD-1 mice were exposed to cocaine (20 mg/kg) for 7 d. The rewarding effects of cocaine were assessed, as were the response to a Trk antagonist and the regulation of dopamine and cAMP-regulated phosphoprotein, 32 kDa (DARPP-32). Cocaine was rewarding in both periadolescent and adult mice using a conditioned place preference procedure. In contrast, postweanling mice failed to demonstrate significant cocaine-induced place preference. Because components of the neurotrophin system including brain-derived neurotrophic factor and TrkB are developmentally regulated, their role in the age-specific effects of cocaine was determined using the Trk receptor antagonist K252a. Postweanling mice that received K252a before daily cocaine showed a significant place preference to the cocaine-paired environment that was not seen in the absence of K252a. DARPP-32 protein levels were significantly upregulated in the lateral region of the caudate-putamen exclusively in postweanling mice after chronic cocaine. Daily pretreatment with K252a attenuated the induction of DARPP-32 in the postweanling striatum. These data indicate that Trk neurotransmission plays a role in age-specific behavioral and molecular responses to cocaine and concurrently modulates DARPP-32 levels

    Brain Neprilysin Activity and Susceptibility to Transgene-Induced Alzheimer Amyloids

    Get PDF
    Neprilysin (NEP) is a zinc metalloproteinase that degrades enkephalins, endothelins, and the Alzheimer’s disease amyloid ß (Aß) peptides. NEP-deficient mice possess increased levels of brain Aß1-40 and Aß1-42. The objective of this study was to determine whether tissue NEP specific activity differs according to age and/or across mouse strains, especially those strains predisposed toward formation of Aß-amyloid plaques following overexpression of the human Alzheimer amyloid precursor protein (APP). The C57Bl/6J mouse strain appears to be relatively susceptible to cerebral amyloidosis, whereas the Swiss Webster (SW) strain appears more resistant. We investigated whether NEP specific activity in brain and kidney homogenates from SW and C57 mice of 6, 40, and 80 weeks old varied according to mouse strain, age, and gender. Among the variables tested, NEP specific activity varied most dramatically across mouse strain, with the kidney and brain of SW mice displaying the highest activities. Aging was associated with a reduction in brain NEP specific activity in both trains. Gender-specific differences were identified in kidney but not in brain. We conclude that aging- and strain-dependent ifferences in NEP specific activity may play a role in the differential susceptibility of some mouse strains for developing cerebral amyloidosis following human APP overexpression

    Protein kinase C and rho activated coiled coil protein kinase 2 (ROCK2) modulate Alzheimer's APP metabolism and phosphorylation of the Vps10-domain protein, SorL1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Generation of the amyloid β (Aβ) peptide of Alzheimer's disease (AD) is differentially regulated through the intracellular trafficking of the amyloid β precursor protein (APP) within the secretory and endocytic pathways. Protein kinase C (PKC) and rho-activated coiled-coil kinases (ROCKs) are two "third messenger" signaling molecules that control the relative utilization of these two pathways. Several members of the Vps family of receptors (Vps35, SorL1, SorCS1) play important roles in post-<it>trans</it>-Golgi network (<it>TGN</it>) sorting and generation of APP derivatives, including Aβ at the TGN, endosome and the plasma membrane. We now report that Vps10-domain proteins are candidate substrates for PKC and/or ROCK2 and act as phospho-state-sensitive physiological effectors for post-<it>TGN </it>sorting of APP and its derivatives.</p> <p>Results</p> <p>Analysis of the SorL1 cytoplasmic tail revealed multiple consensus sites for phosphorylation by protein kinases. SorL1 was subsequently identified as a phosphoprotein, based on sensitivity of its electrophoretic migration pattern to calf intestine alkaline phosphatase and on its reaction with anti-phospho-serine antibodies. Activation of PKC resulted in increased shedding of the ectodomains of both APP and SorL1, and this was paralleled by an apparent increase in the level of the phosphorylated form of SorL1. ROCK2, the neuronal isoform of another protein kinase, was found to form complexes with SorL1, and both ROCK2 inhibition and ROCK2 knockdown enhanced generation of both soluble APP and Aβ.</p> <p>Conclusion</p> <p>These results highlight the potential importance of SorL1 in elucidating phospho-state sensitive mechanisms in the regulation of metabolism of APP and Aβ by PKC and ROCK2.</p

    Phenotyping dividing cells in mouse models of neurodegenerative basal ganglia diseases

    Get PDF
    BACKGROUND: Mice generated by a Cre/LoxP transgenic paradigm were used to model neurodegenerative basal ganglia disease of which Huntington disease (HD) is the prototypical example. In HD, death occurs in striatal projection neurons as well as cortical neurons. Cortical and striatal neurons that express the D1 dopamine receptor (Drd1a) degenerate in HD. The contribution that death of specific neuronal cell populations makes to the HD disease phenotype and the response of the brain to loss of defined cell subtypes is largely unknown. METHODS: Drd1a-expressing cells were targeted for cell death and three independent lines generated; a striatal-restricted line, a cortical-restricted line and a global line in which Drd1a cells were deleted from both the striatum and cortex. Two independent experimental approaches were used. In the first, the proliferative marker Ki-67 was used to identify proliferating cells in eighty-week-old mice belonging to a generic global line, a global in which Drd1a cells express green fluorescent protein (GFP-global) and in eighty-week-old mice of a cortical line. In the second experiment, the proliferative response of four-week-old mice belonging to GFP-global and striatal lines was assessed using the thymidine analogue BrdU. The phenotype of proliferating cells was ascertained by double staining for BrdU and Olig2 (an oligodendrocyte marker), Iba1 (a microglial cell marker), S100β (an astroglial cell marker), or NeuN (a neuronal cell marker). RESULTS: In the first study, we found that Ki-67-expressing cells were restricted to the striatal side of the lateral ventricles. Control mice had a greater number of Ki-67+ cells than mutant mice. There was no overlap between Ki-67 and GFP staining in control or mutant mice, suggesting that cells did not undergo cell division once they acquired a Drd1a phenotype. In contrast, in the second study we found that BrdU+ cells were identified throughout the cortex, striatum and periventricular region of control and mutant mice. Mutant mice from the GFP-global line showed increased BrdU+ cells in the cortex, striatum and periventricular region relative to control. Striatal line mutant mice had an increased number of BrdU+ cells in the striatum and periventricular region, but not the cortex. The number of microglia, astrocytes, oligodendrocytes and neurons generated from dividing progenitors was increased relative to control mice in most brain regions in mutant mice from the GFP-global line. In contrast, striatal line mutant mice displayed an increase only in the number of dividing microglia in striatal and periventricular regions. CONCLUSIONS: Genetically programmed post-natal ablation of Drd1a-expressing neurons is associated with an extensive proliferative response involving multiple cell lineages. The nature of the tissue response has the potential not only to remove cellular debris but also to forge physiologically meaningful brain repair. Age related deficits in proliferation are seen in mutant lines. A blunted endogenous reparative response may underlie the cumulative deficits characteristic of age related neurodegeneration

    In vivo cell-autonomous transcriptional abnormalities revealed in mice expressing mutant huntingtin in striatal but not cortical neurons

    Get PDF
    Huntington's disease (HD), caused by a CAG repeat expansion in the huntingtin (HTT) gene, is characterized by abnormal protein aggregates and motor and cognitive dysfunction. Htt protein is ubiquitously expressed, but the striatal medium spiny neuron (MSN) is most susceptible to dysfunction and death. Abnormal gene expression represents a core pathogenic feature of HD, but the relative roles of cell-autonomous and non-cell-autonomous effects on transcription remain unclear. To determine the extent of cell-autonomous dysregulation in the striatum in vivo, we examined genome-wide RNA expression in symptomatic D9-N171-98Q (a.k.a. DE5) transgenic mice in which the forebrain expression of the first 171 amino acids of human Htt with a 98Q repeat expansion is limited to MSNs. Microarray data generated from these mice were compared with those generated on the identical array platform from a pan-neuronal HD mouse model, R6/2, carrying two different CAG repeat lengths, and a relatively high degree of overlap of changes in gene expression was revealed. We further focused on known canonical pathways associated with excitotoxicity, oxidative stress, mitochondrial dysfunction, dopamine signaling and trophic support. While genes related to excitotoxicity, dopamine signaling and trophic support were altered in both DE5 and R6/2 mice, which may be either cell autonomous or non-cell autonomous, genes related to mitochondrial dysfunction, oxidative stress and the peroxisome proliferator-activated receptor are primarily affected in DE5 transgenic mice, indicating cell-autonomous mechanisms. Overall, HD-induced dysregulation of the striatal transcriptome can be largely attributed to intrinsic effects of mutant Htt, in the absence of expression in cortical neuron

    Egr-1 induces DARPP-32 expression in striatal medium spiny neurons via a conserved intragenic element.

    Get PDF
    DARPP-32 (dopamine and adenosine 3\u27, 5\u27-cyclic monophosphate cAMP-regulated phosphoprotein, 32 kDa) is a striatal-enriched protein that mediates signaling by dopamine and other first messengers in the medium spiny neurons. The transcriptional mechanisms that regulate striatal DARPP-32 expression remain enigmatic and are a subject of much interest in the efforts to induce a striatal phenotype in stem cells. We report the identification and characterization of a conserved region, also known as H10, in intron IV of the gene that codes for DARPP-32 (Ppp1r1b). This DNA sequence forms multiunit complexes with nuclear proteins from adult and embryonic striata of mice and rats. Purification of proteins from these complexes identified early growth response-1 (Egr-1). The interaction between Egr-1 and H10 was confirmed in vitro and in vivo by super-shift and chromatin immunoprecipitation assays, respectively. Importantly, brain-derived neurotrophic factor (BDNF), a known inducer of DARPP-32 and Egr-1 expression, enhanced Egr-1 binding to H10 in vitro. Moreover, overexpression of Egr-1 in primary striatal neurons induced the expression of DARPP-32, whereas a dominant-negative Egr-1 blocked DARPP-32 induction by BDNF. Together, this study identifies Egr-1 as a transcriptional activator of the Ppp1r1b gene and provides insight into the molecular mechanisms that regulate medium spiny neuron maturation

    Occult Pneumothoraces in Children With Blunt Torso Trauma

    Full text link
    Objectives Plain chest x‐ray (CXR) is often the initial screening test to identify pneumothoraces in trauma patients. Computed tomography (CT) scans can identify pneumothoraces not seen on CXR (“occult pneumothoraces”), but the clinical importance of these radiographically occult pneumothoraces in children is not well understood. The objectives of this study were to determine the proportion of occult pneumothoraces in injured children and the rate of treatment with tube thoracostomy among these children. Methods This was a planned substudy from a large prospective multicenter observational cohort study of children younger than 18 years old evaluated in emergency departments (EDs) in the Pediatric Emergency Care Applied Research Network (PECARN) for blunt torso trauma from May 2007 to January 2010. Children with CXRs as part of their trauma evaluations were included for analysis. The faculty radiologist interpretations of the CXRs and any subsequent imaging studies, including CT scans, were reviewed for the absence or presence of pneumothoraces. An “occult pneumothorax” was defined as a pneumothorax that was not identified on CXR, but was subsequently demonstrated on cervical, chest, or abdominal CT scan. Rates of pneumothoraces and placement of tube thoracostomies and rate differences with 95% confidence intervals (CIs) were calculated. Results Of 12,044 enrolled in the parent study, 8,020 (67%) children (median age = 11.3 years, interquartile range [IQR] = 5.3 to 15.2 years) underwent CXRs in the ED, and these children make up the study population. Among these children, 4,276 had abdominal CT scans performed within 24 hours. A total of 372 of 8,020 children (4.6%; 95% CI = 4.2% to 5.1%) had pneumothoraces identified by CXR and/or CT. The CXRs visualized pneumothoraces in 148 patients (1.8%; 95% CI = 1.6% to 2.2%), including one false‐positive pneumothorax, which was identified on CXR, but was not demonstrated on CT. Occult pneumothoraces were present in 224 of 372 (60.2%; 95% CI = 55.0% to 65.2%) children with pneumothoraces. Tube thoracostomies were performed in 85 of 148 (57.4%; 95% CI = 49.0% to 65.5%) children with pneumothoraces on CXR and in 35 of 224 (15.6%; 95% CI = 11.1% to 21.1%) children with occult pneumothoraces (rate difference = –41.8%; 95% CI = –50.8 to –32.3%). Conclusions In pediatric patients with blunt torso trauma, pneumothoraces are uncommon, and most are not identified on the ED CXR. Nearly half of pneumothoraces, and most occult pneumothoraces, are managed without tube thoracostomy. Observation, including in children requiring endotracheal intubation, should be strongly considered during the initial management of children with occult pneumothoraces. Resumen Objetivos La radiografía de tórax simple (RXT) es a menudo la prueba de despistaje inicial para identificar los neumotórax en los pacientes con traumatismo. La tomografía computarizada (TC) puede identificar neumotórax no vistos en la RXT (“neumotórax ocultos”), aunque la importancia clínica de estos neumotórax radiográficamente ocultos en los niños no está muy estudiada. Los objetivos de este estudio fueron determinar la proporción de neumotórax ocultos en los niños accidentados y el porcentaje de tratamiento con tubo de toracostomía en estos niños. Metodología Subestudio diseñado a partir de un gran estudio observacional de cohorte prospectivo multicéntrico de niños menores de 18 años atendidos en los servicios de urgencias (SU) de la Pediatric Emergency Care Applied Research Network (PECARN) que habían sido evaluados por traumatismo torácico cerrado de mayo de 2007 a enero de 2010. Se incluyeron en el análisis los niños en los que la RXT fue parte de la evaluación inicial del traumatismo. Las interpretaciones del radiólogo de las RXT y de cualquier estudio de imagen posterior, incluyendo a TC, se revisaron para la ausencia o presencia de neumotórax. Se definió “neumotórax oculto” como un neumotórax que no fue identificado en la RXT pero que fue posteriormente visualizado en la TC abdominal, torócica o cervical. Se calcularon los porcentajes de neumotórax e inserción de tubo de toracostomía y las diferencias de sus porcentajes con los intervalos de confianza (IC) al 95%. Resultados De los 12.044 incluidos en el estudio principal, se llevo a cabo una RXT en el SU en 8.020 (67%) niños (mediana de edad 11,3 años, rango intercuartílico 5,3 a 15,2), que constituyeron la población de estudio. De estos niños, 4.276 tuvieron una TC realizada en las primeras 24 horas. En 372 de los 8.020 niños (4,6%; IC 95% = 4,2% a 5,1%) se identificó un neumotórax en la RXT y/o la TC. La RXT mostró neumotórax en 148 pacientes (1,8%; IC 95% = 1,6% a 2,2%), incluyendo un falso positivo de neumotórax, que fue identificado en la RXT pero que no fue demostrado en la TC. Los neumotórax ocultos estuvieron presentes en 224 de los 372 niños con neumotórax (60,2%; IC 95% = 55,0% a 65,2%). Se insertaron tubos de toracostomía en 85 de los 148 niños con neumotórax en la RXT (57,4%; IC 95% = 49,0% a 65,5%), y en 35 de los 224 niños con neumotórax oculto (15,6%; IC 95% = 11,1% a 21,1%; diferencia de porcentajes ‐41,8%; IC 95% = ‐50,8 a ‐32,3%). Conclusiones En los pacientes pediátricos con traumatismo torácico cerrado, los neumotórax son poco frecuentes, y la mayoría no son identificados en la RXT en el SU. Casi la mitad de los neumotórax, y la mayoría de los neumotórax ocultos son manejados sin tubo de toracostomía. La observación, incluyendo en los niños que requieren intubación endotraqueal, debería ser especialmente considerada durante el manejo inicial de los niños con neumotórax ocultos.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106913/1/acem12344.pd

    Acute dosing of latrepirdine (Dimebon), a possible Alzheimer therapeutic, elevates extracellular amyloid-beta levels in vitro and in vivo.

    Get PDF
    BACKGROUND: Recent reports suggest that latrepirdine (Dimebon, dimebolin), a retired Russian antihistamine, improves cognitive function in aged rodents and in patients with mild to moderate Alzheimer's disease (AD). However, the mechanism(s) underlying this benefit remain elusive. AD is characterized by extracellular accumulation of the amyloid-beta (Abeta) peptide in the brain, and Abeta-lowering drugs are currently among the most popular anti-amyloid agents under development for the treatment of AD. In the current study, we assessed the effect of acute dosing of latrepirdine on levels of extracellular Abeta using in vitro and in vivo experimental systems. RESULTS: We evaluated extracellular levels of Abeta in three experimental systems, under basal conditions and after treatment with latrepirdine. Mouse N2a neuroblastoma cells overexpressing Swedish APP were incubated for 6 hr in the presence of either vehicle or vehicle + latrepirdine (500pM-5 muM). Synaptoneurosomes were isolated from TgCRND8 mutant APP-overexpressing transgenic mice and incubated for 0 to 10 min in the absence or presence of latrepirdine (1 muM or 10 muM). Drug-naïve Tg2576 Swedish mutant APP overexpressing transgenic mice received a single intraperitoneal injection of either vehicle or vehicle + latrepirdine (3.5 mg/kg). Picomolar to nanomolar concentrations of acutely administered latrepirdine increased the extracellular concentration of Abeta in the conditioned media from Swedish mutant APP-overexpressing N2a cells by up to 64% (p = 0.01), while a clinically relevant acute dose of latrepirdine administered i.p. led to an increase in the interstitial fluid of freely moving APP transgenic mice by up to 40% (p = 0.01). Reconstitution of membrane protein trafficking and processing is frequently inefficient, and, consistent with this interpretation, latrepirdine treatment of isolated TgCRND8 synaptoneurosomes involved higher concentrations of drug (1-10 muM) and led to more modest increases in extracellular Abeta(x-42 )levels (+10%; p = 0.001); of note, however, was the observation that extracellular Abeta(x-40 )levels did not change. CONCLUSIONS: Here, we report the surprising association of acute latrepirdine dosing with elevated levels of extracellular Abeta as measured in three independent neuron-related or neuron-derived systems, including the hippocampus of freely moving Tg2576 mice. Given the reported association of chronic latrepirdine treatment with improvement in cognitive function, the effects of chronic latrepirdine treatment on extracellular Abeta levels must now be determined.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Dietary composition modulates brain mass and solubilizable Aβ levels in a mouse model of aggressive Alzheimer's amyloid pathology

    Get PDF
    RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.Abstract Objective Alzheimer's disease (AD) is a progressive neurodegenerative disease of the central nervous system (CNS). Recently, an increased interest in the role diet plays in the pathology of AD has resulted in a focus on the detrimental effects of diets high in cholesterol and fat and the beneficial effects of caloric restriction. The current study examines how dietary composition modulates cerebral amyloidosis and neuronal integrity in the TgCRND8 mouse model of AD. Methods From 4 wks until 18 wks of age, male and female TgCRND8 mice were maintained on one of four diets: (1) reference (regular) commercial chow; (2) high fat/low carbohydrate custom chow (60 kcal% fat/30 kcal% protein/10 kcal% carbohydrate); (3) high protein/low carbohydrate custom chow (60 kcal% protein/30 kcal% fat/10 kcal% carbohydrate); or (4) high carbohydrate/low fat custom chow (60 kcal% carbohydrate/30 kcal% protein/10 kcal% fat). At age 18 wks, mice were sacrificed, and brains studied for (a) wet weight; (b) solubilizable A&#946; content by ELISA; (c) amyloid plaque burden; (d) stereologic analysis of selected hippocampal subregions. Results Animals receiving a high fat diet showed increased brain levels of solubilizable A&#946;, although we detected no effect on plaque burden. Unexpectedly, brains of mice fed a high protein/low carbohydrate diet were 5% lower in weight than brains from all other mice. In an effort to identify regions that might link loss of brain mass to cognitive function, we studied neuronal density and volume in hippocampal subregions. Neuronal density and volume in the hippocampal CA3 region of TgCRND8 mice tended to be lower in TgCRND8 mice receiving the high protein/low carbohydrate diet than in those receiving the regular chow. Neuronal density and volume were preserved in CA1 and in the dentate gyrus. Interpretation Dissociation of A&#946; changes from brain mass changes raises the possibility that diet plays a role not only in modulating amyloidosis but also in modulating neuronal vulnerability. However, in the absence of a study of the effects of a high protein/low carbohydrate diet on nontransgenic mice, one cannot be certain how much, if any, of the loss of brain mass exhibited by high protein/low carbohydrate diet-fed TgCRND8 mice was due to an interaction between cerebral amyloidosis and diet. Given the recent evidence that certain factors favor the maintenance of cognitive function in the face of substantial structural neuropathology, we propose that there might also exist factors that sensitize brain neurons to some forms of neurotoxicity, including, perhaps, amyloid neurotoxicity. Identification of these factors could help reconcile the poor clinicopathological correlation between cognitive status and structural neuropathology, including amyloid pathology.Published versio

    Gene expression during normal and FSHD myogenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Facioscapulohumeral muscular dystrophy (FSHD) is a dominant disease linked to contraction of an array of tandem 3.3-kb repeats (D4Z4) at 4q35. Within each repeat unit is a gene, <it>DUX4</it>, that can encode a protein containing two homeodomains. A <it>DUX4 </it>transcript derived from the last repeat unit in a contracted array is associated with pathogenesis but it is unclear how.</p> <p>Methods</p> <p>Using exon-based microarrays, the expression profiles of myogenic precursor cells were determined. Both undifferentiated myoblasts and myoblasts differentiated to myotubes derived from FSHD patients and controls were studied after immunocytochemical verification of the quality of the cultures. To further our understanding of FSHD and normal myogenesis, the expression profiles obtained were compared to those of 19 non-muscle cell types analyzed by identical methods.</p> <p>Results</p> <p>Many of the ~17,000 examined genes were differentially expressed (> 2-fold, <it>p </it>< 0.01) in control myoblasts or myotubes vs. non-muscle cells (2185 and 3006, respectively) or in FSHD vs. control myoblasts or myotubes (295 and 797, respectively). Surprisingly, despite the morphologically normal differentiation of FSHD myoblasts to myotubes, most of the disease-related dysregulation was seen as dampening of normal myogenesis-specific expression changes, including in genes for muscle structure, mitochondrial function, stress responses, and signal transduction. Other classes of genes, including those encoding extracellular matrix or pro-inflammatory proteins, were upregulated in FSHD myogenic cells independent of an inverse myogenesis association. Importantly, the disease-linked <it>DUX4 </it>RNA isoform was detected by RT-PCR in FSHD myoblast and myotube preparations only at extremely low levels. Unique insights into myogenesis-specific gene expression were also obtained. For example, all four Argonaute genes involved in RNA-silencing were significantly upregulated during normal (but not FSHD) myogenesis relative to non-muscle cell types.</p> <p>Conclusions</p> <p><it>DUX4</it>'s pathogenic effect in FSHD may occur transiently at or before the stage of myoblast formation to establish a cascade of gene dysregulation. This contrasts with the current emphasis on toxic effects of experimentally upregulated <it>DUX4 </it>expression at the myoblast or myotube stages. Our model could explain why <it>DUX4</it>'s inappropriate expression was barely detectable in myoblasts and myotubes but nonetheless linked to FSHD.</p
    corecore