281 research outputs found

    Membrane-elution analysis of content of cyclins A, B1, and E during the unperturbed mammalian cell cycle

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Problems with whole-culture synchronization methods for the study of the cell cycle have led to the need for an analysis of protein content during the cell cycle of cells that have not been starved or inhibited. The membrane-elution method is a method that allows the study of the cell cycle by producing a culture of unperturbed, synchronized cells.</p> <p>Results</p> <p>The Helmstetter membrane-elution method for the continuous production of newborn, unperturbed, mammalian cells has been enhanced so that the collection of cells of different cell cycle ages is automated, reproducible, and relatively inexpensive. We have applied the automated membrane-elution method to the analysis of cyclin content during the cell cycle. Cyclin E protein was invariant during the cell cycle. Cyclins B1 and A accumulated continuously during the cell cycle and were degraded at mitosis. Newborn cells had ~0.5% of the cyclin B1 content of dividing cells.</p> <p>Conclusion</p> <p>The expression patterns of cyclins A, B1, and E can be explained by constant mRNA levels during the cell cycle. Previously reported phase specific variations of the cyclins are not strictly necessary for cell-cycle progression. Cells produced by membrane-elution are available to other laboratories for analysis of the cell cycle.</p

    Spatial analysis of Cdc42 activity reveals a role for plasma membraneā€“associated Cdc42 in centrosome regulation

    Get PDF
    The ability of the small GTPase Cdc42 to regulate diverse cellular processes depends on tight spatial control of its activity. Cdc42 function is best understood at the plasma membrane (PM), where it regulates cytoskeletal organization and cell polarization. Active Cdc42 has also been detected at the Golgi, but its role and regulation at this organelle are only partially understood. Here we analyze the spatial distribution of Cdc42 activity by moniĀ­toring the dynamics of the Cdc42 FLARE biosensor using the phasor approach to FLIM-FRET. Phasor analysis revealed that Cdc42 is active at all Golgi cisternae and that this activity is controlled by Tuba and ARHGAP10, two Golgi-associated Cdc42 regulators. To our surprise, FGD1, another Cdc42 GEF at the Golgi, was not required for Cdc42 regulation at the Golgi, although its depletion decreased Cdc42 activity at the PM. Similarly, changes in Golgi morphology did not affect Cdc42 activity at the Golgi but were associated with a substantial reduction in PM-associated Cdc42 activity. Of interest, cells with reduced Cdc42 activity at the PM displayed altered centrosome morphology, suggesting that centrosome regulation may be mediated by active Cdc42 at the PM. Our study describes a novel quantitative approach to determine Cdc42 activity at specific subcellular locations and reveals new regulatory principles and functions of this small GTPase

    Optimization of Unrelated Donor Cord Blood Transplantation for Thalassemia: Implications for Other Nonā€Malignant Indications such as HIV Infection or Autoimmune Diseases

    Get PDF
    Since the first cord blood transplantation (CBT), many indications have been proven for this stem cell therapy. Besides the standard hematological indications, such as leukemia, lymphomas, and aplastic anemia, CBT has also been a proven curative therapy for non-hematological indications such as Krabbeā€™s disease, and osteopetrosis. As transplant-related mortality (TRM), overall survival (OS) and disease-free survival (DFS) for CBT continue to improve with larger inventories, double CBT, higher cell dose CB products, optimal conditioning, GvHD, HLA matching, and infection prophylaxis and treatment, the utility of this stem cell source will expand to certain indications which in the past, rarely used CBT. For patients and physicians to accept CBT for indications such as thalassemia, autoimmune diseases or HIV, the benefit-risk ratio has to be significantly improved so that patients will take a chance on a risky procedure in order to improve their lifespan or quality of life. We review here some of the efforts to improve clinical outcome of CBT for thalassemia through increasing cell dosage using a combination strategy ā€“ (1) Chowā€™s MaxCell second and third generation technologies that maximize CB cell dosage, (2) double CBT, (3) no-wash thaw direct infusion advocated by Chow et al., and (4) optimal product selection

    Cord Blood Stem Cell Processing, Banking and Thawing

    Get PDF
    Unrelated donor cord blood (CB) is one of the three sources of hematopoietic stem cell transplantation (HSCT) that are capable of curing ~80ā€“160 standard hematologic and certain non-hematologic indications. Despite its many advantages, the principal drawback for CB in HSCT is its limited cell dose. Our group has focused on developing minimally manipulated technologies and strategies to maximize stem, progenitor, and nucleated cell doses to overcome this limitation. The term ā€œMaxCellā€ is used in this chapter to denote two proprietary CB volume reduction processing technologies that yield virtually 100% recovery of all cell lineages in the manufactured CB products, including what the authors designate as ā€œsecond generationā€ (2nd Gen) or plasma depletion/reduction (PDR) and ā€œthird generationā€ (3rd Gen) MaxCB or MaxCord CB processing technologies. In our proposed nomenclature system, the traditional red cell reduction (RCR) processing techniques are designated as ā€œfirst generationā€ methods. The properties of various popular 1st Gen techniques are compared to the MaxCell CB processing technologies. Parallel processing with the traditional hetastarch (HES) RCR technique and the patented MaxCell CB processing technology were used to compare recovery of the various stem, progenitor, nucleated, and red cell lineages. MaxCell processing technology achieved virtually 100% recovery of all stem, progenitor, and nucleated cells tested after processing, with high cell viability upon thawing. The higher cell recovery produced MaxCell inventory with higher average stem, progenitor and nucleated cell doses, allowing patients to receive CB products with higher cell doses. Clinical outcome of HSCT using MaxCell CB products was compared to the outcome of HSCT with RCR CB products published in the literature from transplant data registries or CB banks. To allow for more rigorous comparisons, two matched-pair analysis (MP) were performed using a logistic regression model to find pairs of pediatric patients with hematologic malignancies and thalassemia transplanted with RCR CB or MaxCell CB, and patients receiving MaxCell CB showed superior engraftment, survival, and transplant-related mortality, confirming pre-match observations

    Spatial analysis of Cdc42 activity reveals a role for plasma membraneā€“associated Cdc42 in centrosome regulation

    Get PDF
    The ability of the small GTPase Cdc42 to regulate diverse cellular processes depends on tight spatial control of its activity. Cdc42 function is best understood at the plasma membrane (PM), where it regulates cytoskeletal organization and cell polarization. Active Cdc42 has also been detected at the Golgi, but its role and regulation at this organelle are only partially understood. Here we analyze the spatial distribution of Cdc42 activity by monitoring the dynamics of the Cdc42 FLARE biosensor using the phasor approach to FLIM-FRET. Phasor analysis revealed that Cdc42 is active at all Golgi cisternae and that this activity is controlled by Tuba and ARHGAP10, two Golgi-associated Cdc42 regulators. To our surprise, FGD1, another Cdc42 GEF at the Golgi, was not required for Cdc42 regulation at the Golgi, although its depletion decreased Cdc42 activity at the PM. Similarly, changes in Golgi morphology did not affect Cdc42 activity at the Golgi but were associated with a substantial reduction in PM-associated Cdc42 activity. Of interest, cells with reduced Cdc42 activity at the PM displayed altered centrosome morphology, suggesting that centrosome regulation may be mediated by active Cdc42 at the PM. Our study describes a novel quantitative approach to determine Cdc42 activity at specific subcellular locations and reveals new regulatory principles and functions of this small GTPase

    Drying banana seeds for ex situ conservation

    Get PDF
    The ability of seeds to withstand drying is fundamental to ex situ seed conservation but drying responses are not well known for most wild species including crop wild relatives. We look at drying responses of seeds of Musa acuminata and Musa balbisiana, the two primary wild relatives of bananas and plantains, using the following four experimental approaches: (i)We equilibrated seeds to a range of relative humidity (RH) levels using non-saturated lithium chloride solutions and subsequently measured moisture content (MC) and viability. At each humidity levelwe tested viability using embryo rescue (ER), tetrazolium chloride staining and germination in an incubator.We found that seed viabilitywas not reduced when seedswere dried to 4% equilibrium relative humidity (eRH; equating to 2.5% MC). (ii)We assessed viability ofmature and less mature seeds using ER and germination in the soil and tested responses to drying. Findings showed that seeds must be fully mature to germinate and immature seeds had negligible viability. (iii) We dried seeds extracted from ripe/unripe fruit to 35ā€“40% eRH at different rates and tested viability with germination tests in the soil. Seeds from unripe fruit lost viability when dried and especially when dried faster; seeds from ripe fruit only lost viability when fast dried. (iv) Finally, we dried and re-imbibed mature and less mature seeds and measured embryo shrinkage and volume change using X-ray computer tomography. Embryos of less mature seeds shrank significantly when dried to 15% eRH from 0.468 to 0.262 mm3, but embryos of mature seeds did not. Based on our results, mature seeds from ripe fruit are desiccation tolerant to moisture levels required for seed genebanking but embryos from immature seeds are mechanistically less able to withstand desiccation, especially when water potential gradients are high

    US Cancer Centers of Excellence Strategies for Increased Inclusion of Racial and Ethnic Minorities in Clinical Trials

    Get PDF
    PURPOSE:: Participation of racial and ethnic minority groups (REMGs) in cancer trials is disproportionately low despite a high prevalence of certain cancers in REMG populations. We aimed to identify notable practices used by leading US cancer centers that facilitate REMG participation in cancer trials. METHODS:: The National Minority Quality Forum and Sustainable Healthy Communities Diverse Cancer Communities Working Group developed criteria by which to identify eligible US cancer centers-REMGs comprise 10% or more of the catchment area; a 10% to 50% yearly accrual rate of REMGs in cancer trials; and the presence of formal community outreach and diversity enrollment programs. Cancer center leaders were interviewed to ascertain notable practices that facilitate REMG accrual in clinical trials. RESULTS:: Eight cancer centers that met the Communities Working Group criteria were invited to participate in in-depth interviews. Notable strategies for increased REMG accrual to cancer trials were reported across five broad themes: commitment and center leadership, investigator training and mentoring, community engagement, patient engagement, and operational practices. Specific notable practices included increased engagement of health care professionals, the presence of formal processes for obtaining REMG patient/caregiver input on research projects, and engagement of community groups to drive REMG participation. Centers also reported an increase in the allocation of resources to improving health disparities and increased dedication of research staff to REMG engagement. CONCLUSION:: We have identified notable practices that facilitate increased participation of REMGs in cancer trials. Wide implementation of such strategies across cancer centers is essential to ensure that all populations benefit from advances in an era of increasingly personalized treatment of cancer
    • ā€¦
    corecore