10 research outputs found

    The \u3b1-ketoglutarate dehydrogenase complex in cancer metabolic plasticity

    No full text
    Deregulated metabolism is a well-established hallmark of cancer. At the hub of various metabolic pathways deeply integrated within mitochondrial functions, the \u3b1-ketoglutarate dehydrogenase complex represents a major modulator of electron transport chain activity and tricarboxylic acid cycle (TCA) flux, and is a pivotal enzyme in the metabolic reprogramming following a cancer cell\u2019s change in bioenergetic requirements. By contributing to the control of \u3b1-ketoglutarate levels, dynamics, and oxidation state, the \u3b1-ketoglutarate dehydrogenase is also essential in modulating the epigenetic landscape of cancer cells. In this review, we will discuss the manifold roles that this TCA enzyme and its substrate play in cancer

    Detecting Variants in the NBN Gene While Testing for Hereditary Breast Cancer: What to Do Next?

    No full text
    The NBN gene has been included in breast cancer (BC) multigene panels based on early studies suggesting an increased BC risk for carriers, though not confirmed by recent research. To evaluate the impact of NBN analysis, we assessed the results of NBN sequencing in 116 BRCA-negative BC patients and reviewed the literature. Three patients (2.6%) carried potentially relevant variants: two, apparently unrelated, carried the frameshift variant c.156_157delTT and another one the c.628G>T variant. The latter was subsequently found in 4/1390 (0.3%) BC cases and 8/1580 (0.5%) controls in an independent sample, which, together with in silico predictions, provided evidence against its pathogenicity. Conversely, the rare c.156_157delTT variant was absent in the case-control set; moreover, a 50% reduction of NBN expression was demonstrated in one carrier. However, in one family it failed to co-segregate with BC, while the other carrier was found to harbor also a probably pathogenic TP53 variant that may explain her phenotype. Therefore, the c.156_157delTT, although functionally deleterious, was not supported as a cancer-predisposing defect. Pathogenic/likely pathogenic NBN variants were detected by multigene panels in 31/12314 (0.25%) patients included in 15 studies. The risk of misinterpretation of such findings is substantial and supports the exclusion of NBN from multigene panels

    Platinum-induced mitochondrial DNA mutations confer lower sensitivity to paclitaxel by impairing tubulin cytoskeletal organization

    Get PDF
    Development of chemoresistance is a cogent clinical issue in oncology, whereby combination of anticancer drugs is usually preferred also to enhance efficacy. Paclitaxel (PTX), combined with carboplatin, represents the standard first-line chemotherapy for different types of cancers. We here depict a double-edge role of mitochondrial DNA (mtDNA) mutations induced in cancer cells after treatment with platinum. MtDNA mutations were positively selected by PTX, and they determined a decrease in the mitochondrial respiratory function, as well as in proliferative and tumorigenic potential, in terms of migratory and invasive capacity. Moreover, cells bearing mtDNA mutations lacked filamentous tubulin, the main target of PTX, and failed to reorient the Golgi body upon appropriate stimuli. We also show that the bioenergetic and cytoskeletal phenotype were transferred along with mtDNA mutations in transmitochondrial hybrids, and that this also conferred PTX resistance to recipient cells. Overall, our data show that platinum-induced deleterious mtDNA mutations confer resistance to PTX, and confirm what we previously reported in an ovarian cancer patient treated with carboplatin and PTX who developed a quiescent yet resistant tumor mass harboring mtDNA mutations

    Self-renewal of CD133(hi) cells by IL6/Notch3 signalling regulates endocrine resistance in metastatic breast cancer

    Get PDF
    open25siThe mechanisms of metastatic progression from hormonal therapy (HT) are largely unknown in luminal breast cancer. Here we demonstrate the enrichment of CD133(hi)/ER(lo) cancer cells in clinical specimens following neoadjuvant endocrine therapy and in HT refractory metastatic disease. We develop experimental models of metastatic luminal breast cancer and demonstrate that HT can promote the generation of HT-resistant, self-renewing CD133(hi)/ER(lo)/IL6(hi) cancer stem cells (CSCs). HT initially abrogates oxidative phosphorylation (OXPHOS) generating self-renewal-deficient cancer cells, CD133(hi)/ER(lo)/OXPHOS(lo). These cells exit metabolic dormancy via an IL6-driven feed-forward ER(lo)-IL6(hi)-Notch(hi) loop, activating OXPHOS, in the absence of ER activity. The inhibition of IL6R/IL6-Notch pathways switches the self-renewal of CD133(hi) CSCs, from an IL6/Notch-dependent one to an ER-dependent one, through the re-expression of ER. Thus, HT induces an OXPHOS metabolic editing of luminal breast cancers, paradoxically establishing HT-driven self-renewal of dormant CD133(hi)/ER(lo) cells mediating metastatic progression, which is sensitive to dual targeted therapy.Our work was also supported by grants from the National Institutes of Health (R01: CA87637 (J.B.)), Charles and Marjorie Holloway Foundation (J.B.), Sussman Family Fund (J.B.), Lerner Foundation (J.B.), AstraZeneca (J.B.), Breast Cancer Alliance (J.B.), Manhasset Women's Coalition Against Breast Cancer (J.B.), NYS Women's Bowling Association (J.B.), The Beth C. Tortolani Foundation (J.B. and D.L.). J.B. has consulted for Roche, Medimmune and Bristol-Myers Squibb, and has received research support from AstraZeneca. This study was also supported by MSK Cancer Center Support Grant/Core Grant (P30 CA008748; J.B), National Institutes of Health (U01-CA169538) (D.L. and J.B.), The Manning Foundation (D.L.), The Hartwell Foundation (D.L.), Fundacao para aCiencia e a Tecnologia (D.L.), The Nancy C and Daniel P Paduano Foundation (D.L.), The Mary Kay Foundation (D.L.), Pediatric Oncology Experimental Therapeutic Investigator Consortium (POETIC, D.L.), James Paduano Foundation (D.L.), Malcolm Hewitt Weiner Foundation (D.L.), Theodore A Rapp Foundation (D.L.) and American Hellenic Educational Progressive Association 5th District Cancer Research Foundation (D.L.). G.G.'s laboratory is funded by Associazione Italiana Ricerca sul Cancro (AIRC, grant IG14242 JANEUTICS), Fondazione Umberto Veronesi (grant DISCO TRIP) and FP7 EU ITN-Marie Curie Action project MEET (G.A.317433). M.V. is supported by a triennial AIRC fellowship ‘Wanda Cantone e Alberto Rigillo'. M.B. is supported by the Cornelia and Roberto Pallotti Legacy. The Wellness after Breast Cancer study (U. Penn) was supported by the National Institutes of Health (R01: CA158243 (J.J.M.)) Susan G. Komen (KG110876; A.D.).openSansone, Pasquale; Ceccarelli, Claudio; Berishaj, Marjan; Chang, Qing; Rajasekhar, Vinagolu K; Perna, Fabiana; Bowman, Robert L; Vidone, Michele; Daly, Laura; Nnoli, Jennifer; Santini, Donatella; Taffurelli, Mario; Shih, Natalie N C; Feldman, Michael; Mao, Jun J; Colameco, Christopher; Chen, Jinbo; Demichele, Angela; Fabbri, Nicola; Healey, John H; Cricca, Monica; Gasparre, Giuseppe; Lyden, David; Bonafé, Massimiliano; Bromberg, JacquelineSansone, Pasquale; Ceccarelli, Claudio; Berishaj, Marjan; Chang, Qing; Rajasekhar, Vinagolu K; Perna, Fabiana; Bowman, Robert L; Vidone, Michele; Daly, Laura; Nnoli, Jennifer; Santini, Donatella; Taffurelli, Mario; Shih, Natalie N C; Feldman, Michael; Mao, Jun J; Colameco, Christopher; Chen, Jinbo; Demichele, Angela; Fabbri, Nicola; Healey, John H; Cricca, Monica; Gasparre, Giuseppe; Lyden, David; Bonafé, Massimiliano; Bromberg, Jacquelin

    A Comprehensive Characterization of Mitochondrial DNA Mutations in Glioblastoma Multiforme

    No full text
    Glioblastoma Multiforme (GBM) is the most malignant brain cancer in adults, with a poor prognosis, whose molecular stratification still represents a challenge in pathology and clinics. On the other hand, mitochondrial DNA (mtDNA) mutations have been found in most tumors as modifiers of the bioenergetics state, albeit in GBM a characterization of the mtDNA status is lacking to date. Here, a large characterization of the burden of mtDNA mutations in GBM samples was performed. First, investigation of tumor-specific vs. non tumor-specific mutations was carried out with the MToolBox bioinformatics pipeline by analyzing 46 matched tumor/blood samples, from whole genome or whole exome sequencing datasets obtained from The Cancer Genome Atlas (TCGA) consortium. Additionally, the entire mtDNA sequence was obtained in a dataset of 104 fresh-frozen GBM samples. Mitochondrial mutations with potential pathogenic interest were prioritized based on heteroplasmic fraction, nucleotide variability, and in silico prediction of pathogenicity. A preliminary biochemical analysis of the activity of mitochondrial respiratory complexes was also performed on fresh-frozen GBM samples. Although a high number of mutations were detected, we report that the large majority of them do not pass the prioritization filters. Therefore, a relatively limited burden of pathogenic mutations is indeed carried by GBM, which did not appear to determine a general impairment of the respiratory chain

    Oncocytic glioblastoma: a glioblastoma showing oncocytic changes and increased mitochondrial DNA copy number

    No full text
    Ten cases of glioblastomas showing oncocytic changes are described. The tumors showed mononuclear to multinuclear cells and abundant, granular, eosinophilic cytoplasm. The cytoplasm of these same cells was filled by strongly immunoreactive mitochondria. At ultrastructure, numerous mitochondria, some of which were large, were evidenced in the cytoplasm of neoplastic cells. Finally, 9 of 10 of these cases had a significantly high mitochondrial DNA content compared with control tissue (P < .01). It seems that, for these tumors, the designation of oncocytic glioblastoma is appropriate. To the best of our knowledge, oncocytic changes have not been previously reported in such neoplasms. Oncocytic glioblastomas have to be added to the long list of various tumors that can manifest \u201cunexpected\u201d oncocytic changes in different organs. Albeit failing to show statistical significance (log-rank test, P = .597; Wilcoxon test, P = .233), we observed a trend for longer median survival in oncocytic glioblastomas, when compared with \u201cordinary\u201d glioblastomas (median survival of 16 versus 8.7 months). Thus, it seems that the definition of neoplasms showing oncocytic changes, currently based on classic morphological parameters (ie, histology, ultrastructure, and immunohistochemistry), can be expanded by including the quantitative assessment of mitochondrial DNA content

    Oncocytic glioblastoma: a glioblastoma showing oncocytic changes and increased mitochondrial DNA copy number

    No full text
    Ten cases of glioblastomas showing oncocytic changes are described. The tumors showed mononuclear to multinuclear cells and abundant, granular, eosinophilic cytoplasm. The cytoplasm of these same cells was filled by strongly immunoreactive mitochondria. At ultrastructure, numerous mitochondria, some of which were large, were evidenced in the cytoplasm of neoplastic cells. Finally, 9 of 10 of these cases had a significantly high mitochondrial DNA content compared with control tissue (P < .01). It seems that, for these tumors, the designation of oncocytic glioblastoma is appropriate. To the best of our knowledge, oncocytic changes have not been previously reported in such neoplasms. Oncocytic glioblastomas have to be added to the long list of various tumors that can manifest "unexpected" oncocytic changes in different organs. Albeit failing to show statistical significance (log-rank test, P = .597; Wilcoxon test, P = .233), we observed a trend for longer median survival in oncocytic glioblastomas, when compared with "ordinary" glioblastomas (median survival of 16 versus 8.7 months). Thus, it seems that the definition of neoplasms showing oncocytic changes, currently based on classic morphological parameters (ie, histology, ultrastructure, and immunohistochemistry), can be expanded by including the quantitative assessment of mitochondrial DNA content. (C) 2013 Elsevier Inc. All rights reserved
    corecore