104 research outputs found

    The electronic properties of a homoleptic bisphosphine Cu(I) complex: a joint theoretical and experimental insight

    Get PDF
    The origin of the optical properties of the firstly reported stable luminescent [Cu(PP)_2]^+ complex [Cu(dppb)_2]+ [dppb = 1,2-bis(diphenylphosphino) benzene] is investigated using the exchange-correlation functional PBE0. The choice of the basis set used is discussed and a comparison with the results obtained by other functionals is performed. The role played by the bisphosphine ligands within the complex is elucidated by considering the electronic properties of the ligand alone to evidence how both the geometrical changes and the electronic interactions, induced by the inclusion of the metal cation, affect the electronic behavior of the whole system. The NBO analysis shows how the aryl groups of the ligands act as a reservoir of electrons within the complex. The electronic excitations of both the complex and of the ligand, calculated by including the solvation effects, allow to assign the lowest energy absorption broad band, recorded in CH_2Cl_2 solution. The peculiar contribution of the phosphorus atoms to the description of the high occupied MOs and the participation of the copper cation to the description of the lowest singlet excited state, is pointed out. The origin of the observed phosphorescence of the complex is attributed to a triplet state, whose SOMO is characterized by the contributions of the valence 4s and of the Rydberg 5s AOs of the metal cation, along with the lone pair orbitals of the P atoms.Si sono studiate le proprieta` ottiche del primo complesso stabile e luminescente di tipo [Cu(PP}]^+ [[Cu(dppb)2]+_2]^+ [dppb = 1,2-bis(difenilfosfino) benzene], riportato in letteratura utilizzando il metodo PBE0. Si e` discussa la scelta della base orbitale utilizzata nello studio e si e` effettuato un confronto con altri metodi DFT. Si e` illustrato il ruolo dei leganti bisfosfinici nel complesso esaminando come cambia la loro geometria e configurazione elettronica con l\u27inclusione del metallo per formare il complesso. Sono state studiate le eccitazioni elettroniche del complessso e del legante includendo gli effetti di solvatazione. per assegnare la prima banda di assorbimento osservata negli spettri con i campioni in soluzioni di diclorometano. Sono stati evidenziati i contributi dell\u27atomo di fosforo alla descrizione degli orbitali occupati ad alta energia del complesso e del Cu^+ a quelli virtuali a piu` bassa energia. L\u27origine della fosforescenza del complesso e` attribuita ad uno stato di tripletto il cui SOMO e` caratterizzato dagli orbitali atomici di valenza di tipo 4s e da un orbitale di Rydberg 5s di Cu^+ e dagli orbitali atomici singolarmente occupati del fosforo

    Synthesis of giant globular multivalent glycofullerenes as potent inhibitors in a model of Ebola virus infection

    Get PDF
    The use of multivalent carbohydrate compounds to block cell-surface lectin receptors is a promising strategy to inhibit the entry of pathogens into cells and could lead to the discovery of novel antiviral agents. One of the main problems with this approach, however, is that it is difficult to make compounds of an adequate size and multivalency to mimic natural systems such as viruses. Hexakis adducts of [60]fullerene are useful building blocks in this regard because they maintain a globular shape at the same time as allowing control over the size and multivalency. Here we report water-soluble tridecafullerenes decorated with 120 peripheral carbohydrate subunits, so-called ‘superballs’, that can be synthesized efficiently from hexakis adducts of [60]fullerene in one step by using copper-catalysed azide–alkyne cycloaddition click chemistry. Infection assays show that these superballs are potent inhibitors of cell infection by an artificial Ebola virus with half-maximum inhibitory concentrations in the subnanomolar range

    The Science Performance of JWST as Characterized in Commissioning

    Full text link
    This paper characterizes the actual science performance of the James Webb Space Telescope (JWST), as determined from the six month commissioning period. We summarize the performance of the spacecraft, telescope, science instruments, and ground system, with an emphasis on differences from pre-launch expectations. Commissioning has made clear that JWST is fully capable of achieving the discoveries for which it was built. Moreover, almost across the board, the science performance of JWST is better than expected; in most cases, JWST will go deeper faster than expected. The telescope and instrument suite have demonstrated the sensitivity, stability, image quality, and spectral range that are necessary to transform our understanding of the cosmos through observations spanning from near-earth asteroids to the most distant galaxies.Comment: 5th version as accepted to PASP; 31 pages, 18 figures; https://iopscience.iop.org/article/10.1088/1538-3873/acb29

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore