457 research outputs found
A method to deconvolve stellar rotational velocities
Rotational speed is an important physical parameter of stars and knowing the
distribution of stellar rotational velocities is essential for the
understanding stellar evolution. However, it cannot be measured directly but
the convolution of the rotational speed and the sine of the inclination angle,
. We developed a method to deconvolve this inverse problem and obtain
the cumulative distribution function (CDF) for stellar rotational velocities
extending the work of Chandrasekhar & M\"unch (1950). This method is applied a)
to theoretical synthetic data recovering the original velocity distribution
with very small error; b) to a sample of about 12.000 field main--sequence
stars, corroborating that the velocity distribution function is
non--Maxwellian, but is better described by distributions based on the concept
of maximum entropy, such as Tsallis or Kaniadakis distribution functions. This
is a very robust and novel method that deconvolve the rotational velocity
cumulative distribution function from a sample of data in just one
single step without needing any convergence criteria.Comment: Accepted in A&
- âŠ