6 research outputs found

    Demonstration data on the set up of consumer wearable device for exposure and health monitoring in population studies

    No full text
    The dataset is provided in the form of an excel files with 5 tabs. The first three excel tabs constitute demonstration data on the set up of consumer wearable device for exposure and health monitoring in population studies while the two last excel tabs include the full dataset with actual data collected using the consumer wearable devices in Cyprus and Greece respectively during the Spring of 2020. The data from the last two tabs were used to assess the compliance of asthmatic schoolchildren (n=108) from both countries to public health intervention levels in response to COVID-19 pandemic (lockdown and social distancing measures), using wearable sensors to continuously track personal location and physical activity. Asthmatic children were recruited from primary schools in Cyprus and Greece (Heraklion district, Crete) and were enrolled in the LIFE-MEDEA public health intervention project (Clinical.Trials.gov Identifier: NCT03503812). The LIFE-MEDEA project aimed to evaluate the efficacy of behavioral recommendations to reduce exposure to particulate matter during desert dust storm (DDS) events and thus mitigate disease-specific adverse health effects in vulnerable groups of patients. However, during the COVID-19 pandemic, the collected data were analysed using a mixed effect model adjusted for confounders to estimate the changes in 'fraction time spent at home' and 'total steps/day' during the enforcement of gradually more stringent lockdown measures. Results of this analysis were first presented in the manuscript titled “Use of wearable sensors to assess compliance of asthmatic children in response to lockdown measures for the COVID-19 epidemic” published by Scientific Reports (https://doi.org/10.1038/s41598-021-85358-4). The dataset from LIFE-MEDEA participants (asthmatic children) from Cyprus and Greece, include variables: Study ID, gender, age, study year, ambient temperature, ambient humidity, recording day, percentage of time staying at home, steps per day, callendar day, calendar week, date, lockdown status (phase 1, 2, or 3) due to COVID-19 pandemic, and if the date was during the weekend (binary variable). All data were collected following approvals from relevant authorities at both Cyprus and Greece, according to national legislation. In Cyprus, approvals have been obtained from the Cyprus National Bioethics Committee (EEBK EΠ 2017.01.141), by the Data Protection Commissioner (No. 3.28.223) and Ministry of Education (No 7.15.01.23.5). In Greece, approvals have been obtained from the Scientific Committee (25/04/2018, No: 1748) and the Governing Board of the University General Hospital of Heraklion (25/22/08/2018). Overall, wearable sensors, often embedded in commercial smartwatches, allow for continuous and non-invasive health measurements and exposure assessment in clinical studies. Nevertheless, the real-life application of these technologies in studies involving many participants for a significant observation period may be hindered by several practical challenges. Using a small subset of the LIFE-MEDEA dataset, in the first excel tab of dataset, we provide demonstration data from a small subset of asthmatic children (n=17) that participated in the LIFE MEDEA study that were equipped with a smartwatch for the assessment of physical activity (heart rate, pedometer, accelerometer) and location (exposure to indoor or outdoor microenvironment using GPS signal). Participants were required to wear the smartwatch, equipped with a data collection application, daily, and data were transmitted via a wireless network to a centrally administered data collection platform. The main technical challenges identified ranged from restricting access to standard smartwatch features such as gaming, internet browser, camera, and audio recording applications, to technical challenges such as loss of GPS signal, especially in indoor environments, and internal smartwatch settings interfering with the data collection application. The dataset includes information on the percentage of time with collected data before and after the implementation of a protocol that relied on setting up the smartwatch device using publicly available Application Lockers and Device Automation applications to address most of these challenges. In addition, the dataset includes example single-day observations that demonstrate how the inclusion of a Wi-Fi received signal strength indicator, significantly improved indoor localization and largely minimised GPS signal misclassification (excel tab 2). Finally excel tab 3, shows the tasks Overall, the implementation of these protocols during the roll-out of the LIFE MEDEA study in the spring of 2020 led to significantly improved results in terms of data completeness and data quality. The protocol and the representative results have been submitted for publication to the Journal of Visualised experiments (submission: JoVE63275). The Variables included in the first three excel tabs were the following: Participant ID (Unique serial number for patient participating in the study), % Time Before (Percentage of time with data before protocol implementation), % Time After (Percentage of time with data after protocol implementation), Timestamp (Date and time of event occurrence), Indoor/Outdoor (Categorical- Classification of GPS signals to Indoor and Outdoor and null(missing value) based on distance from participant home), Filling algorithm (Imputation algorithm), SSID (Wireless network name connected to the smartwatch), Wi-Fi Signal Strength (Connection strength via Wi-Fi between smartwatch and home’s wireless network. (0 maximum strength), IMEI (International mobile equipment identity. Device serial number), GPS_LAT (Latitude), GPS_LONG (Longitude), Accuracy of GPS coordinates (Accuracy in meters of GPS coordinates), Timestamp of GPS coordinates (Obtained GPS coordinates Date and time), Battery Percentage (Battery life), Charger (Connected to the charger status). Important notes on data collection methodology: Global positioning system (GPS) and physical activity data were recorded using LEMFO-LM25 smartwatch device which was equipped with the embrace™ data collection application. The smartwatch worked as a stand-alone device that was able to transmit data across 5-minute intervals to a cloud-based database via Wi-Fi data transfer. The software was able to synchronize the data collected from the different sensors, so the data are transferred to the cloud with the same timestamp. Data synchronization with the cloud-based database is performed automatically when the smartwatch contacts the Wi-Fi network inside the participants’ homes. According to the study aims, GPS coordinates were used to estimate the fraction of time spent in or out of the participants' residences. The time spent outside was defined as the duration of time with a GPS signal outside a 100-meter radius around the participant’s residence, to account for the signal accuracy in commercially available GPS receivers. Additionally, to address the limitation that signal accuracy in urban and especially indoor environments is diminished, 5-minute intervals with missing GPS signals were classified as either “indoor classification” or “outdoor classification” based on the most recent available GPS recording. The implementation of this GPS data filling algorithm allowed replacing the missing 5-minute intervals with estimated values. Via the described protocol, and through the use of a Device Automation application, information on WiFi connectivity, WiFi signal strength, battery capacity, and whether the device was charging or not was also made available. Data on these additional variables were not automatically synchronised with the cloud-based database but had to be manually downloaded from each smartwatch via Bluetooth after the end of the study period.  </p

    Pediatric asthma symptom control during lockdown for the COVID-19 pandemic in Spring 2020: A prospective community-based study in Cyprus and Greece

    No full text
    Objectives To prospectively quantify at the community level changes in asthma symptom control and other morbidity indices, among asthmatic schoolchildren in response to coronavirus disease 2019 (COVID-19) lockdown measures. Methods In Spring 2019 and Spring 2020, we prospectively assessed monthly changes in pediatric asthma control test (c-ACT), asthma medication usage, infections and unscheduled visits for asthma among schoolchildren with active asthma in Cyprus and Greece. We compared asthma symptom control and other morbidity indices before and during lockdown measures, while participants’ time spent at home was objectively assessed by wearable sensors. Results A total of 119 asthmatic children participated in the study during Spring 2020. Compared to a mean baseline (pre-COVID-19 lockdown) c-ACT score of 22.70, adjusted mean increases of 2.58 (95% confidence interval [CI]: 1.91, 3.26, p < 0.001) and 3.57 (95% CI: 2.88, 4.27, p < 0.001) in the 2nd and 3rd monthly assessments were observed after implementation of lockdown measures. A mean increase in c-ACT score of 0.32 (95% CI: 0.17, 0.47, p < 0.001) was noted per 10% increase in the time spent at home. Improvement was more profound in children with severe asthma, while significant reductions in infections, asthma medication usage and unscheduled visits for asthma were also observed. During Spring 2019, 39 children participated in the study in the absence of lockdown measures and no changes in c-ACT or other indices of disease severity were observed. Conclusions Clinically meaningful improvements in asthma symptom control, among asthmatic schoolchildren were observed during the COVID-19 lockdown measures in Spring 2020. Improvements were independently associated with time spent at home and were more profound in the children with severe asthma

    Pediatric asthma symptom control during lockdown for the COVID-19 pandemic in Spring 2020: A prospective community-based study in Cyprus and Greece

    No full text
    Objectives To prospectively quantify at the community level changes in asthma symptom control and other morbidity indices, among asthmatic schoolchildren in response to coronavirus disease 2019 (COVID-19) lockdown measures. Methods In Spring 2019 and Spring 2020, we prospectively assessed monthly changes in pediatric asthma control test (c-ACT), asthma medication usage, infections and unscheduled visits for asthma among schoolchildren with active asthma in Cyprus and Greece. We compared asthma symptom control and other morbidity indices before and during lockdown measures, while participants’ time spent at home was objectively assessed by wearable sensors. Results A total of 119 asthmatic children participated in the study during Spring 2020. Compared to a mean baseline (pre-COVID-19 lockdown) c-ACT score of 22.70, adjusted mean increases of 2.58 (95% confidence interval [CI]: 1.91, 3.26, p < 0.001) and 3.57 (95% CI: 2.88, 4.27, p < 0.001) in the 2nd and 3rd monthly assessments were observed after implementation of lockdown measures. A mean increase in c-ACT score of 0.32 (95% CI: 0.17, 0.47, p < 0.001) was noted per 10% increase in the time spent at home. Improvement was more profound in children with severe asthma, while significant reductions in infections, asthma medication usage and unscheduled visits for asthma were also observed. During Spring 2019, 39 children participated in the study in the absence of lockdown measures and no changes in c-ACT or other indices of disease severity were observed. Conclusions Clinically meaningful improvements in asthma symptom control, among asthmatic schoolchildren were observed during the COVID-19 lockdown measures in Spring 2020. Improvements were independently associated with time spent at home and were more profound in the children with severe asthma

    Use of wearable sensors to assess compliance of asthmatic children in response to lockdown measures for the COVID-19 epidemic

    Get PDF
    Between March and April 2020, Cyprus and Greece health authorities enforced three escalated levels of public health interventions to control the COVID-19 pandemic. We quantified compliance of 108 asthmatic schoolchildren (53 from Cyprus, 55 from Greece, mean age 9.7 years) from both countries to intervention levels, using wearable sensors to continuously track personal location and physical activity. Changes in ‘fraction time spent at home’ and ‘total steps/day’ were assessed with a mixed-effects model adjusting for confounders. We observed significant mean increases in ‘fraction time spent at home’ in Cyprus and Greece, during each intervention level by 41.4% and 14.3% (level 1), 48.7% and 23.1% (level 2) and 45.2% and 32.0% (level 3), respectively. Physical activity in Cyprus and Greece demonstrated significant mean decreases by − 2,531 and − 1,191 (level 1), − 3,638 and − 2,337 (level 2) and − 3,644 and − 1,961 (level 3) total steps/day, respectively. Significant independent effects of weekends and age were found on ‘fraction time spent at home’. Similarly, weekends, age, humidity and gender had an independent effect on physical activity. We suggest that wearable technology provides objective, continuous, real-time location and activity data making possible to inform in a timely manner public health officials on compliance to various tiers of public health interventions during a pandemic

    Responses of schoolchildren with asthma to recommendations to reduce desert dust exposure: Results from the LIFE-MEDEA intervention project using wearable technology

    No full text
    Current public health recommendations for desert dust storms (DDS) events focus on vulnerable population groups, such as children with asthma, and include advice to stay indoors and limit outdoor physical activity. To date, no scientific evidence exists on the efficacy of these recommendations in reducing DDS exposure. We aimed to objectively assess the behavioral responses of children with asthma to recommendations for reduction of DDS exposure. In two heavily affected by DDS Mediterranean regions (Cyprus & Crete, Greece), schoolchildren with asthma (6-11 years) were recruited from primary schools and were randomized to control (business as usual scenario) and intervention groups. All children were equipped with pedometer and GPS sensors embedded in smartwatches for objective real-time data collection from inside and outside their classroom and household settings. Interventions included the timely communication of personal DDS alerts accompanied by exposure reduction recommendations to both the parents and school-teachers of children in the intervention group. A mixed effect model was used to assess changes in daily levels of time spent, and steps performed outside classrooms and households, between non-DDS and DDS days across the study groups. The change in the time spent outside classrooms and homes, between non-DDS and DDS days, was 37.2 min (pvalue = 0.098) in the control group and -62.4 min (pvalue < 0.001) in the intervention group. The difference in the effects between the two groups was statistically significant (interaction pvalue < 0.001). The change in daily steps performed outside classrooms and homes, was -495.1 steps (pvalue = 0.350) in the control group and -1039.5 (pvalue = 0.003) in the intervention group (interaction pvalue = 0.575). The effects on both the time and steps performed outside were more profound during after-school hours. To summarize, among children with asthma, we demonstrated that timely personal DDS alerts and detailed recommendations lead to significant behavioral changes in contrast to the usual public health recommendations

    Improved indoor air quality during desert dust storms: The impact of the MEDEA exposure-reduction strategies

    No full text
    Desert dust storms (DDS) are natural events that impact not only populations close to the emission sources but also populations many kilometers away. Countries located across the main dust sources, including countries in the Eastern Mediterranean, are highly affected by DDS. In addition, climate change is expanding arid areas exacerbating DDS events. Currently, there are no intervention measures with proven, quantified exposure reduction to desert dust particles. As part of the wider "MEDEA" project, co-funded by LIFE 2016 Programme, we examined the effectiveness of an indoor exposure-reduction intervention (i.e., decrease home ventilation during DDS events and continuous use of air purifier during DDS and non-DDS days) across homes and/or classrooms of schoolchildren with asthma and adults with atrial fibrillation in Cyprus and Crete-Greece. Participants were randomized to a control or intervention groups, including an indoor intervention group with exposure reduction measures and the use of air purifiers. Particle sampling, PM10 and PM2.5, was conducted in participants' homes and/or classrooms, between 2019 and 2022, during DDS-free weeks and during DDS days for as long as the event lasted. In indoor and outdoor PM10 and PM2.5 samples, mass and content in main and trace elements was determined. Indoor PM2.5 and PM10 mass concentrations, adjusting for premise type and dust conditions, were significantly lower in the indoor intervention group compared to the control group (PM2.5-intervention/PM2.5-control = 0.57, 95% CI: 0.47, 0.70; PM10-intervention/PM10-control = 0.59, 95% CI: 0.49, 0.71). In addition, the PM2.5 and PM10 particles of outdoor origin were significantly lower in the intervention vs. the control group (PM2.5 infiltration intervention-to-control ratio: 0.49, 95% CI: 0.42, 0.58; PM10 infiltration intervention-to-control ratio: 0.68, 95% CI: 0.52, 0.89). Our findings suggest that the use of air purifiers alongside decreased ventilation measures is an effective protective measure that reduces significantly indoor exposure to particles during DDS and non-DDS in high-risk population groups
    corecore