9 research outputs found

    Azole-Resistance in Aspergillus terreus and Related Species: An Emerging Problem or a Rare Phenomenon?

    Get PDF
    Raquel Sabino was not included as an author in the published article. It was corrected a posteriori.Erratum in - Corrigendum: Azole-Resistance in Aspergillus terreus and Related Species: An Emerging Problem or a Rare Phenomenon? [Front Microbiol. 2018] Front Microbiol. 2019 Jan 14;9:3245. doi: 10.3389/fmicb.2018.03245. eCollection 2018.Disponível em: https://www.frontiersin.org/articles/10.3389/fmicb.2018.03245/fullFree PMC Article: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5882871/ | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6340063/Objectives: Invasive mold infections associated with Aspergillus species are a significant cause of mortality in immunocompromised patients. The most frequently occurring aetiological pathogens are members of the Aspergillus section Fumigati followed by members of the section Terrei. The frequency of Aspergillus terreus and related (cryptic) species in clinical specimens, as well as the percentage of azole-resistant strains remains to be studied. Methods: A global set (n = 498) of A. terreus and phenotypically related isolates was molecularly identified (beta-tubulin), tested for antifungal susceptibility against posaconazole, voriconazole, and itraconazole, and resistant phenotypes were correlated with point mutations in the cyp51A gene. Results: The majority of isolates was identified as A. terreus (86.8%), followed by A. citrinoterreus (8.4%), A. hortai (2.6%), A. alabamensis (1.6%), A. neoafricanus (0.2%), and A. floccosus (0.2%). One isolate failed to match a known Aspergillus sp., but was found most closely related to A. alabamensis. According to EUCAST clinical breakpoints azole resistance was detected in 5.4% of all tested isolates, 6.2% of A. terreus sensu stricto (s.s.) were posaconazole-resistant. Posaconazole resistance differed geographically and ranged from 0% in the Czech Republic, Greece, and Turkey to 13.7% in Germany. In contrast, azole resistance among cryptic species was rare 2 out of 66 isolates and was observed only in one A. citrinoterreus and one A. alabamensis isolate. The most affected amino acid position of the Cyp51A gene correlating with the posaconazole resistant phenotype was M217, which was found in the variation M217T and M217V. Conclusions:Aspergillus terreus was most prevalent, followed by A. citrinoterreus. Posaconazole was the most potent drug against A. terreus, but 5.4% of A. terreus sensu stricto showed resistance against this azole. In Austria, Germany, and the United Kingdom posaconazole-resistance in all A. terreus isolates was higher than 10%, resistance against voriconazole was rare and absent for itraconazole.This work was supported by ECMM, ISHAM, and EFISG and in part by an unrestricted research grant through the Investigator Initiated Studies Programof Astellas, MSD, and Pfizer. This study was fundet by the Christian Doppler Laboratory for invasive fungal infections.info:eu-repo/semantics/publishedVersio

    In vivo characterization of the properties of SUM01-specific monobodies

    No full text
    Monobodies are small recombinant proteins designed to bind with high affinity to target proteins. Monobodies have been generated to mimic the SIM [SUMO (small ubiquitin-like modifier)-interacting motif] present in many SUMO target proteins, but their properties have not been determined in cells. In the present study we characterize the properties of two SUMO1-specific monobodies (hS1MB4 and hS1MB5) in HEK (human embyronic kidney)-293 and HeLa cells and examine their ability to purify SUMO substrates from cell lines and rat brain. Both hS1MB4 and hS1MB5 compared favourably with commercially available antibodies and were highly selective for binding to SUMO1 over SUMO2/3 in pull-down assays against endogenous and overexpressed SUMO and SUMOylated proteins. Monobodies expressed in HeLa cells displayed a nuclear and cytosolic distribution that overlaps with SUMO1. Expression of the monobodies effectively inhibited protein SUMOylation by SUMO1 and, surprisingly, by SUMO2/3, but were not cytotoxic for at least 36 h. We attribute the effects on SUMO2/3 to the role of SUMO1 in chain termination and/or monobody inhibition of the SUMO-conjugating E1 enzyme complex. Taken together, these data provide the first demonstration that monobodies represent useful new tools both to isolate SUMO conjugates and to probe cell SUMOylation pathways in vivo.</jats:p

    Turning solid aluminium transparent by intense soft X-ray photoionization

    No full text
    Saturable absorption is a phenomenon readily seen in the optical and infrared wavelengths. It has never been observed in core-electron transitions owing to the short lifetime of the excited states involved and the high intensities of the soft X-rays needed. We report saturable absorption of an L-shell transition in aluminium using record intensities over 10 16 W cm 2 at a photon energy of 92 eV. From a consideration of the relevant timescales, we infer that immediately after the X-rays have passed, the sample is in an exotic state where all of the aluminium atoms have an L-shell hole, and the valence band has approximately a 9 eV temperature, whereas the atoms are still on their crystallographic positions. Subsequently, Auger decay heats the material to the warm dense matter regime, at around 25 eV temperatures. The method is an ideal candidate to study homogeneous warm dense matter, highly relevant to planetary science, astrophysics and inertial confinement fusion. © 2009 Macmillan Publishers Limited. All rights reserved

    DataSheet1.pdf

    No full text
    <p>Objectives: Invasive mold infections associated with Aspergillus species are a significant cause of mortality in immunocompromised patients. The most frequently occurring aetiological pathogens are members of the Aspergillus section Fumigati followed by members of the section Terrei. The frequency of Aspergillus terreus and related (cryptic) species in clinical specimens, as well as the percentage of azole-resistant strains remains to be studied.</p><p>Methods: A global set (n = 498) of A. terreus and phenotypically related isolates was molecularly identified (beta-tubulin), tested for antifungal susceptibility against posaconazole, voriconazole, and itraconazole, and resistant phenotypes were correlated with point mutations in the cyp51A gene.</p><p>Results: The majority of isolates was identified as A. terreus (86.8%), followed by A. citrinoterreus (8.4%), A. hortai (2.6%), A. alabamensis (1.6%), A. neoafricanus (0.2%), and A. floccosus (0.2%). One isolate failed to match a known Aspergillus sp., but was found most closely related to A. alabamensis. According to EUCAST clinical breakpoints azole resistance was detected in 5.4% of all tested isolates, 6.2% of A. terreus sensu stricto (s.s.) were posaconazole-resistant. Posaconazole resistance differed geographically and ranged from 0% in the Czech Republic, Greece, and Turkey to 13.7% in Germany. In contrast, azole resistance among cryptic species was rare 2 out of 66 isolates and was observed only in one A. citrinoterreus and one A. alabamensis isolate. The most affected amino acid position of the Cyp51A gene correlating with the posaconazole resistant phenotype was M217, which was found in the variation M217T and M217V.</p><p>Conclusions:Aspergillus terreus was most prevalent, followed by A. citrinoterreus. Posaconazole was the most potent drug against A. terreus, but 5.4% of A. terreus sensu stricto showed resistance against this azole. In Austria, Germany, and the United Kingdom posaconazole-resistance in all A. terreus isolates was higher than 10%, resistance against voriconazole was rare and absent for itraconazole.</p

    Current state-of-the-art and gaps in platform trials: 10 things you should know, insights from EU-PEARL

    No full text
    Summary: Platform trials bring the promise of making clinical research more efficient and more patient centric. While their use has become more widespread, including their prominent role during the COVID-19 pandemic response, broader adoption of platform trials has been limited by the lack of experience and tools to navigate the critical upfront planning required to launch such collaborative studies. The European Union-Patient-cEntric clinicAl tRial pLatform (EU-PEARL) initiative has produced new methodologies to expand the use of platform trials with an overarching infrastructure and services embedded into Integrated Research Platforms (IRPs), in collaboration with patient representatives and through consultation with U.S. Food and Drug Administration and European Medicines Agency stakeholders. In this narrative review, we discuss the outlook for platform trials in Europe, including challenges related to infrastructure, design, adaptations, data sharing and regulation. Documents derived from the EU-PEARL project, alongside a literature search including PubMed and relevant grey literature (e.g., guidance from regulatory agencies and health technology agencies) were used as sources for a multi-stage collaborative process through which the 10 more important points based on lessons drawn from the EU-PEARL project were developed and summarised as guidance for the setup of platform trials. We conclude that early involvement of critical stakeholder such as regulatory agencies or patients are critical steps in the implementation and later acceptance of platform trials. Addressing these gaps will be critical for attaining the full potential of platform trials for patients. Funding: Innovative Medicines Initiative 2 Joint Undertaking with support from the European Union’s Horizon 2020 research and innovation programme and EFPIA
    corecore