23,461 research outputs found

    Integral invariants in flat superspace

    Get PDF
    We are solving for the case of flat superspace some homological problems that were formulated by Berkovits and Howe. (Our considerations can be applied also to the case of supertorus.) These problems arise in the attempt to construct integrals invariant with respect to supersymmetry. They appear also in other situations, in particular, in the pure spinor formalism in supergravity.Comment: 15 page

    Convergence and Optimality of Adaptive Mixed Finite Element Methods

    Full text link
    The convergence and optimality of adaptive mixed finite element methods for the Poisson equation are established in this paper. The main difficulty for mixed finite element methods is the lack of minimization principle and thus the failure of orthogonality. A quasi-orthogonality property is proved using the fact that the error is orthogonal to the divergence free subspace, while the part of the error that is not divergence free can be bounded by the data oscillation using a discrete stability result. This discrete stability result is also used to get a localized discrete upper bound which is crucial for the proof of the optimality of the adaptive approximation

    Homology of Lie algebra of supersymmetries

    Full text link
    We study the homology and cohomology groups of super Lie algebra of supersymmetries and of super Poincare algebra. We discuss in detail the calculation in dimensions D=10 and D=6. Our methods can be applied to extended supersymmetry algebra and to other dimensions
    • …
    corecore