954 research outputs found

    Canonizing Graphs of Bounded Tree Width in Logspace

    Get PDF
    Graph canonization is the problem of computing a unique representative, a canon, from the isomorphism class of a given graph. This implies that two graphs are isomorphic exactly if their canons are equal. We show that graphs of bounded tree width can be canonized by logarithmic-space (logspace) algorithms. This implies that the isomorphism problem for graphs of bounded tree width can be decided in logspace. In the light of isomorphism for trees being hard for the complexity class logspace, this makes the ubiquitous class of graphs of bounded tree width one of the few classes of graphs for which the complexity of the isomorphism problem has been exactly determined.Comment: 26 page

    A Rare, Late Complication after Automated Implantable Cardioverter-Defibrillator Placement

    Get PDF
    This article describes an interesting case of automated implantable cardioverter defibrillator (AICD) extrusion fifteen months after implantation. The case report is followed by a discussion of the causes and treatment of skin erosion following pacemaker/AICD insertion

    Large-scale Multi-item Auctions : Evidence from Multimedia-supported Experiments

    Get PDF
    This book presents two experimental studies that deal with the comparison of multi-item auction designs for two specific applications: the sale of 2.6 GHz radio spectrum rights in Europe, and the sale of emissions permits in Australia. In order to tackle the complexity of these experiments, a cognitively based toolkit is proposed, including modularized video instructions, comprehension tests, a learning platform, a graphical one-screen user interface, and comprehension-based group matching

    efficiency and evolution of R&D Networks.

    Get PDF
    This work introduces a new model to investigate the efficiency and evolution of networks of firms exchanging knowledge in R&D partnerships. We first examine the efficiency of a given network structure from the point of view of maximizing total profits in the industry. We show that the efficient network structure depends on the marginal cost of collaboration. When the marginal cost is low, the complete graph is efficient. However, a high marginal cost implies that the efficient network is sparser and has a core-periphery structure. Next, we examine the evolution of the network structure when the decision on collaborating partners is decentralized. We show the existence of multiple equilibrium structures which are in general inefficient. This is due to (i) the path dependent character of the partner selection process, (ii) the presence of knowledge externalities and (iii) the presence of severance costs involved in link deletion. Finally, we study the properties of the emerging equilibrium networks and we show that they are coherent with the stylized facts on R&D networks.R&D networks;technology spillovers;network efficiency;network formation;

    The Efficiency and Evolution of R&D Networks

    Get PDF
    This work introduces a new model to investigate the efficiency and evolution of networks of firms exchanging knowledge in R&D partnerships. We first examine the efficiency of a given network structure in terms of the maximization of total profits in the industry. We show that the efficient network structure depends on the marginal cost of collaboration. When the marginal cost is low, the complete graph is efficient. However, a high marginal cost implies that the efficient network is sparser and has a core-periphery structure. Next, we examine the evolution of the network struc- ture when the decision on collaborating partners is decentralized. We show the existence of mul- tiple equilibrium structures which are in general inefficient. This is due to (i) the path dependent character of the partner selection process, (ii) the presence of knowledge externalities and (iii) the presence of severance costs involved in link deletion. Finally, we study the properties of the emerg- ing equilibrium networks and we show that they are coherent with the stylized facts of R&D net- works.R&D networks, technology spillovers, network efficiency, network formation

    Revised metallicity classes for low-mass stars: dwarfs (dM), subdwarfs (sdM), extreme subdwarfs (esdM), and ultra subdwarfs (usdM)

    Full text link
    The current classification system of M stars on the main sequence distinguishes three metallicity classes (dwarfs - dM, subdwarfs - sdM, and extreme subdwarfs - esdM). The spectroscopic definition of these classes is based on the relative strength of prominent CaH and TiO molecular absorption bands near 7000A, as quantified by three spectroscopic indices (CaH2, CaH3, and TiO5). We re-examine this classification system in light of our ongoing spectroscopic survey of stars with proper motion \mu > 0.45 "/yr, which has increased the census of spectroscopically identified metal-poor M stars to over 400 objects. Kinematic separation of disk dwarfs and halo subdwarfs suggest deficiencies in the current classification system. Observations of common proper motion doubles indicates that the current dM/sdM and sdM/esdM boundaries in the [TiO5,CaH2+CaH3] index plane do not follow iso-metallicity contours, leaving some binaries inappropriately classified as dM+sdM or sdM+esdM. We propose a revision of the classification system based on an empirical calibration of the TiO/CaH ratio for stars of near solar metallicity. We introduce the parameter \zeta_{TiO/CaH} which quantifies the weakening of the TiO bandstrength due to metallicity effect, with values ranging from \zeta_{TiO/CaH}=1 for stars of near-solar metallicity to \zeta_{TiO/CaH}~0 for the most metal-poor (and TiO depleted) subdwarfs. We redefine the metallicity classes based on the value of the parameter \zeta_{TiO/CaH}; and refine the scheme by introducing an additional class of ultra subdwarfs (usdM). We introduce sequences of sdM, esdM, and usdM stars to be used as formal classification standards.Comment: 15 pages, accepted for publication in the Astrophysical Journa
    • ā€¦
    corecore