15 research outputs found

    The IFN-γ-Inducible GTPase, Irga6, Protects Mice against Toxoplasma gondii but Not against Plasmodium berghei and Some Other Intracellular Pathogens

    Get PDF
    Clearance of infection with intracellular pathogens in mice involves interferon-regulated GTPases of the IRG protein family. Experiments with mice genetically deficient in members of this family such as Irgm1(LRG-47), Irgm3(IGTP), and Irgd(IRG-47) has revealed a critical role in microbial clearance, especially for Toxoplasma gondii. The in vivo role of another member of this family, Irga6 (IIGP, IIGP1) has been studied in less detail. We investigated the susceptibility of two independently generated mouse strains deficient in Irga6 to in vivo infection with T. gondii, Mycobacterium tuberculosis, Leishmania mexicana, L. major, Listeria monocytogenes, Anaplasma phagocytophilum and Plasmodium berghei. Compared with wild-type mice, mice deficient in Irga6 showed increased susceptibility to oral and intraperitoneal infection with T. gondii but not to infection with the other organisms. Surprisingly, infection of Irga6-deficient mice with the related apicomplexan parasite, P. berghei, did not result in increased replication in the liver stage and no Irga6 (or any other IRG protein) was detected at the parasitophorous vacuole membrane in IFN-γ-induced wild-type cells infected with P. berghei in vitro. Susceptibility to infection with T. gondii was associated with increased mortality and reduced time to death, increased numbers of inflammatory foci in the brains and elevated parasite loads in brains of infected Irga6-deficient mice. In vitro, Irga6-deficient macrophages and fibroblasts stimulated with IFN-γ were defective in controlling parasite replication. Taken together, our results implicate Irga6 in the control of infection with T. gondii and further highlight the importance of the IRG system for resistance to this pathogen

    Synergism of Gamma Interferon and Interleukin-5 in the Control of Murine Filariasis

    No full text
    There has been a prevailing perception that Th1 and Th2 immune responses induce antagonistic immune effector mechanisms during an infection. We investigated the role of the Th1 cytokine gamma interferon (IFN-γ) and the Th2 cytokine interleukin-5 (IL-5) in murine filariasis infections with the rodent filarial nematode Litomosoides sigmodontis with regard to immune responses to the parasite. Earlier data showed an important role for IL-5 and IFN-γ in effective immune responses to filarial infection. Therefore, in this study it was asked whether IL-5 and IFN-γ act synergistically or antagonistically. Indeed, IL-5 as well as IFN-γ knockout (KO) mice show a higher worm load than the wild-type controls. IFN-γ/IL-5 double-KO mice had a significantly higher worm load than any of the single-KO mice, suggesting a synergism between IFN-γ and IL-5 in controlling worm infection. Neutrophils are known to play an important role for the containment and encapsulation process of the worms. In infected IFN-γ KO, IL-5 KO, and IFN-γ/IL-5 double-KO mice, neutrophils were significantly reduced in chemotactic activity levels compared to controls. In addition, the level of phagocytosis activity of neutrophils from IFN-γ/IL-5 double-KO mice was further decreased in comparison to that of the single-KO mice. Levels of tumor necrosis factor alpha, which is an important factor for neutrophil activation, were found to be reduced in macrophages from KO mice. In conclusion, these results argue for immune effector mechanisms in murine filarial infection that are dependent on both IFN-γ and IL-5. Synergistic effects of the two cytokines may be mediated, at least in part, by neutrophils for the control of adult worms

    Mice Deficient in Interleukin-4 (IL-4) or IL-4 Receptor α Have Higher Resistance to Sporozoite Infection with Plasmodium berghei (ANKA) than Do Naive Wild-Type Mice

    No full text
    BALB/c interleukin-4 (IL-4(−/−)) or IL-4 receptor-α (IL-4rα(−/−)) knockout (KO) mice were used to assess the roles of the IL-4 and IL-13 pathways during infections with the blood or liver stages of plasmodium in murine malaria. Intraperitoneal infection with the blood-stage erythrocytes of Plasmodium berghei (ANKA) resulted in 100% mortality within 24 days in BALB/c mice, as well as in the mutant mouse strains. However, when infected intravenously with the sporozoite liver stage, 60 to 80% of IL-4(−/−) and IL-4rα(−/−) mice survived, whereas all BALB/c mice succumbed with high parasitemia. Compared to infected BALB/c controls, the surviving KO mice showed increased NK cell numbers and expression of inducible nitric oxide synthase (iNOS) in the liver and were able to eliminate parasites early during infection. In vivo blockade of NO resulted in 100% mortality of sporozoite-infected KO mice. In vivo depletion of NK cells also resulted in 80 to 100% mortality, with a significant reduction in gamma interferon (IFN-γ) production in the liver. These results suggest that IFN-γ-producing NK cells are critical in host resistance against the sporozoite liver stage by inducing NO production, an effective killing effector molecule against Plasmodium. The absence of IL-4-mediated functions increases the protective innate immune mechanism identified above, which results in immunity against P. berghei infection in these mice, with no major role for IL-13

    Mice deficient in interleukin-4 (IL-4) or IL-4 receptor alpha have higher resistance to sporozoite infection with Plasmodium berghei (ANKA) than do naive wild-type mice

    No full text
    BALB/c interleukin-4 (IL-4(-/-)) or IL-4 receptor-alpha (IL-4ralpha(-/-)) knockout (KO) mice were used to assess the roles of the IL-4 and IL-13 pathways during infections with the blood or liver stages of plasmodium in murine malaria. Intraperitoneal infection with the blood-stage erythrocytes of Plasmodium berghei (ANKA) resulted in 100% mortality within 24 days in BALB/c mice, as well as in the mutant mouse strains. However, when infected intravenously with the sporozoite liver stage, 60 to 80% of IL-4(-/-) and IL-4ralpha(-/-) mice survived, whereas all BALB/c mice succumbed with high parasitemia. Compared to infected BALB/c controls, the surviving KO mice showed increased NK cell numbers and expression of inducible nitric oxide synthase (iNOS) in the liver and were able to eliminate parasites early during infection. In vivo blockade of NO resulted in 100% mortality of sporozoite-infected KO mice. In vivo depletion of NK cells also resulted in 80 to 100% mortality, with a significant reduction in gamma interferon (IFN-gamma) production in the liver. These results suggest that IFN-gamma-producing NK cells are critical in host resistance against the sporozoite liver stage by inducing NO production, an effective killing effector molecule against Plasmodium. The absence of IL-4-mediated functions increases the protective innate immune mechanism identified above, which results in immunity against P. berghei infection in these mice, with no major role for IL-13

    Lack of Eosinophil Peroxidase or Major Basic Protein Impairs Defense against Murine Filarial Infection

    No full text
    Eosinophils are a hallmark of allergic diseases and helminth infection, yet direct evidence for killing of helminth parasites by their toxic granule products exists only in vitro. We investigated the in vivo roles of the eosinophil granule proteins eosinophil peroxidase (EPO) and major basic protein 1 (MBP) during infection with the rodent filaria Litomosoides sigmodontis. Mice deficient for either EPO or MBP on the 129/SvJ background developed significantly higher worm burdens than wild-type mice. Furthermore, the data indicate that EPO or MBP is involved in modulating the immune response leading to altered cytokine production during infection. Thus, in the absence of MBP, mice showed increased interleukin-10 (IL-10) production after stimulation of macrophages from the thoracic cavity where the worms reside. In addition to elevated IL-10 levels, EPO(−/−) mice displayed strongly increased amounts of the Th2 cytokine IL-5 by CD4 T cells as well as a significantly higher eosinophilia. Interestingly, a reduced ability to produce IL-4 in the knockout strains could even be seen in noninfected mice, arguing for different innate propensities to react with a Th2 response in the absence of either EPO or MBP. In conclusion, both of the eosinophil granule products MBP and EPO are part of the defense mechanism against filarial parasites. These data suggest a hitherto unknown interaction between eosinophil granule proteins, defense against filarial nematodes, and cytokine responses of macrophages and CD4 T cells

    Murine filariasis: interleukin 4 and interleukin 5 lead to containment of different worm developmental stages

    No full text
    We compared the impact of IL-4 and IL-5 deficiency during the fully permissive infection of BALB/c mice with the rodent filaria Litomosoides sigmodontis. IL-5, in contrast to IL-4, is crucial for the containment of adult worms during short- and long-ter
    corecore