55 research outputs found
Intrafamilial variable phenotype including corticobasal syndrome in a family with p.P301L mutation in the MAPT gene: first report in South America
Frontotemporal lobar degeneration is a neuropathological disorder that causes a variety of clinical syndromes including frontotemporal dementia (FTD), progressive supranuclear palsy, and corticobasal syndrome (CBS). FTD associated with parkinsonism occurs frequently as a result of mutations in the C9orf72 gene and also in the genes coding for the protein associated with microtubule tau (MAPT) and progranulin (GRN) on chromosome 17 (FTDP-17). Herein, we report an Argentinean family, of Basque ancestry, with an extensive family history of behavioral variant of FTD. Twenty-one members over 6 generations composed the pedigree. An extensive neurologic and neurocognitive examination was performed on 2 symptomatic individuals and 3 nonsymptomatic individuals. Two different phenotypes were identified among affected members, CBS in the proband and FTD in his brother. DNA was extracted from blood for these 5 individuals and whole-exome sequencing was performed on 3 of them followed by Sanger sequencing of candidate genes on the other 2. In both affected individuals, a missense mutation (p.P301L; rs63751273) in exon 10 of the MAPT gene (chr17q21.3) was identified. Among MAPT mutations, p.P301L is the most frequently associated to different phenotypes: (1) aggressive, symmetrical, and early-onset Parkinsonism; (2) late parkinsonism associated with FTD; and (3) progressive supranuclear palsy but only exceptionally it is reported associated to CBS. This is the first report of the occurrence of the p.P301L-MAPT mutation in South America and supports the marked phenotypic heterogeneity among members of the same family as previously reported
Triggering Receptor Expressed on Myeloid Cell 2 R47H Exacerbates Immune Response in Alzheimer\u27s Disease Brain.
The R47H variant in the microglial triggering receptor expressed on myeloid cell 2 (TREM2) receptor is a strong risk factor for Alzheimer\u27s disease (AD). To characterize processes affected by R47H, we performed an integrative network analysis of genes expressed in brains of AD patients with R47H, sporadic AD without the variant, and patients with polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy (PLOSL), systemic disease with early-onset dementia caused by loss-of-function mutations in TREM2 or its adaptor TYRO protein tyrosine kinase-binding protein (TYROBP). Although sporadic AD had few perturbed microglial and immune genes, TREM2 R47H AD demonstrated upregulation of interferon type I response and pro-inflammatory cytokines accompanied by induction of NKG2D stress ligands. In contrast, PLOSL had distinct sets of highly perturbed immune and microglial genes that included inflammatory mediators, immune signaling, cell adhesion, and phagocytosis. TREM2 knockout (KO) in THP1, a human myeloid cell line that constitutively expresses the TREM2- TYROBP receptor, inhibited response to the viral RNA mimetic poly(I:C) and phagocytosis of amyloid-beta oligomers; overexpression of ectopic TREM2 restored these functions. Compared with wild-type protein, R47H TREM2 had a higher stimulatory effect on the interferon type I response signature. Our findings point to a role of the TREM2 receptor in the control of the interferon type I response in myeloid cells and provide insight regarding the contribution of R47H TREM2 to AD pathology
Recommended from our members
Somatic PDGFRB activating variants in fusiform cerebral aneurysms
The role of somatic genetic variants in the pathogenesis of intracranial-aneurysm formation is unknown. We identified a 23-year-old man with progressive, right-sided intracranial aneurysms, ipsilateral to an impressive cutaneous phenotype. The index individual underwent a series of genetic evaluations for known connective-tissue disorders, but the evaluations were unrevealing. Paired-sample exome sequencing between blood and fibroblasts derived from the diseased areas detected a single novel variant predicted to cause a p.Tyr562Cys (g.149505130T>C [GRCh37/hg19]; c.1685A>G) change within the platelet-derived growth factor receptor β gene (PDGFRB), a juxtamembrane-coding region. Variant-allele fractions ranged from 18.75% to 53.33% within histologically abnormal tissue, suggesting post-zygotic or somatic mosaicism. In an independent cohort of aneurysm specimens, we detected somatic-activating PDGFRB variants in the juxtamembrane domain or the kinase activation loop in 4/6 fusiform aneurysms (and 0/38 saccular aneurysms; Fisher's exact test, p < 0.001). PDGFRB-variant, but not wild-type, patient cells were found to have overactive auto-phosphorylation with downstream activation of ERK, SRC, and AKT. The expression of discovered variants demonstrated non-ligand-dependent auto-phosphorylation, responsive to the kinase inhibitor sunitinib. Somatic gain-of-function variants in PDGFRB are a novel mechanism in the pathophysiology of fusiform cerebral aneurysms and suggest a potential role for targeted therapy with kinase inhibitors
Rare loss of function variants in candidate genes and risk of colorectal cancer
Although ~ 25% of colorectal cancer or polyp (CRC/P) cases show familial aggregation, current germline genetic testing identifies a causal genotype in the 16 major genes associated with high penetrance CRC/P in only 20% of these cases. As there are likely other genes underlying heritable CRC/P, we evaluated the association of variation at novel loci with CRC/P. We evaluated 158 a priori selected candidate genes by comparing the number of rare potentially disruptive variants (PDVs) found in 84 CRC/P cases without an identified CRC/P risk-associated variant and 2440 controls. We repeated this analysis using an additional 73 CRC/P cases. We also compared the frequency of PDVs in select genes among CRC/P cases with two publicly available data sets. We found a significant enrichment of PDVs in cases vs. controls: 20% of cases vs. 11.5% of controls with ≥ 1 PDV (OR = 1.9, p = 0.01) in the original set of cases. Among the second cohort of CRC/P cases, 18% had a PDV, significantly different from 11.5% (p = 0.02). Logistic regression, adjusting for ancestry and multiple testing, indicated association between CRC/P and PDVs in NTHL1 (p = 0.0001), BRCA2 (p = 0.01) and BRIP1 (p = 0.04). However, there was no significant difference in the frequency of PDVs at each of these genes between all 157 CRC/P cases and two publicly available data sets. These results suggest an increased presence of PDVs in CRC/P cases and support further investigation of the association of NTHL1, BRCA2 and BRIP1 variation with CRC/P
Actionable, Pathogenic Incidental Findings in 1,000 Participants’ Exomes
The incorporation of genomics into medicine is stimulating interest on the return of incidental findings (IFs) from exome and genome sequencing. However, no large-scale study has yet estimated the number of expected actionable findings per individual; therefore, we classified actionable pathogenic single-nucleotide variants in 500 European- and 500 African-descent participants randomly selected from the National Heart, Lung, and Blood Institute Exome Sequencing Project. The 1,000 individuals were screened for variants in 114 genes selected by an expert panel for their association with medically actionable genetic conditions possibly undiagnosed in adults. Among the 1,000 participants, 585 instances of 239 unique variants were identified as disease causing in the Human Gene Mutation Database (HGMD). The primary literature supporting the variants’ pathogenicity was reviewed. Of the identified IFs, only 16 unique autosomal-dominant variants in 17 individuals were assessed to be pathogenic or likely pathogenic, and one participant had two pathogenic variants for an autosomal-recessive disease. Furthermore, one pathogenic and four likely pathogenic variants not listed as disease causing in HGMD were identified. These data can provide an estimate of the frequency (∼3.4% for European descent and ∼1.2% for African descent) of the high-penetrance actionable pathogenic or likely pathogenic variants in adults. The 23 participants with pathogenic or likely pathogenic variants were disproportionately of European (17) versus African (6) descent. The process of classifying these variants underscores the need for a more comprehensive and diverse centralized resource to provide curated information on pathogenicity for clinical use to minimize health disparities in genomic medicine
Performance of ACMG-AMP Variant-Interpretation Guidelines among Nine Laboratories in the Clinical Sequencing Exploratory Research Consortium
Evaluating the pathogenicity of a variant is challenging given the plethora of types of genetic evidence that laboratories consider. Deciding how to weigh each type of evidence is difficult, and standards have been needed. In 2015, the American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) published guidelines for the assessment of variants in genes associated with Mendelian diseases. Nine molecular diagnostic laboratories involved in the Clinical Sequencing Exploratory Research (CSER) consortium piloted these guidelines on 99 variants spanning all categories (pathogenic, likely pathogenic, uncertain significance, likely benign, and benign). Nine variants were distributed to all laboratories, and the remaining 90 were evaluated by three laboratories. The laboratories classified each variant by using both the laboratory's own method and the ACMG-AMP criteria. The agreement between the two methods used within laboratories was high (K-alpha = 0.91) with 79% concordance. However, there was only 34% concordance for either classification system across laboratories. After consensus discussions and detailed review of the ACMG-AMP criteria, concordance increased to 71%. Causes of initial discordance in ACMG-AMP classifications were identified, and recommendations on clarification and increased specification of the ACMG-AMP criteria were made. In summary, although an initial pilot of the ACMG-AMP guidelines did not lead to increased concordance in variant interpretation, comparing variant interpretations to identify differences and having a common framework to facilitate resolution of those differences were beneficial for improving agreement, allowing iterative movement toward increased reporting consistency for variants in genes associated with monogenic disease
Genome sequencing and carrier testing: decisions on categorization and whether to disclose results of carrier testing
We are investigating the use of genome sequencing for preconception carrier testing. Genome sequencing could identify one or more of thousands of X-linked or autosomal recessive conditions that could be disclosed during preconception or prenatal counseling. Therefore, a framework that helps both clinicians and patients understand the possible range of findings is needed to respect patient preferences by ensuring that information about only the desired types of genetic conditions are provided to a given patient
RNase 7 Contributes to the Cutaneous Defense against Enterococcus faecium
Background: Human skin is able to mount a fast response against invading microorganisms by the release of antimicrobial proteins such as the ribonuclease RNase 7. Because RNase 7 exhibits high activity against Enterococcus faecium the aim of this study was to further explore the role of RNase 7 in the cutaneous innate defense system against E. faecium. Methodology/Principal Findings: Absolute quantification using real-time PCR and ELISA revealed that primary keratinocytes expressed high levels of RNase 7. Immunohistochemistry showed RNase 7 expression in all epidermal layers of the skin with an intensification in the upper more differentiated layers. Furthermore, RNase 7 was secreted by keratinocytes in vitro and in vivo in a site-dependent way. RNase 7 was still active against E. faecium at low pH (5.5) or high NaCl (150 mM) concentration and the bactericidal activity of RNase 7 against E. faecium required no ribonuclease activity as shown by recombinant RNase 7 lacking enzymatic activity. To further explore the role of RNase 7 in cutaneous defense against E. faecium, we investigated whether RNase 7 contributes to the E. faecium killing activity of skin extracts derived from stratum corneum. Treatment of the skin extract with an RNase 7 specific antibody, which neutralizes the antimicrobial activity of RNase 7, diminished its E. faecium killing activity. Conclusions/Significance: Our data indicate that RNase 7 contributes to the E. faecium-killing activity of skin extracts an
Recommended from our members
The accessible chromatin landscape of the human genome
DNaseI hypersensitive sites (DHSs) are markers of regulatory DNA and have underpinned the discovery of all classes of cis-regulatory elements including enhancers, promoters, insulators, silencers, and locus control regions. Here we present the first extensive map of human DHSs identified through genome-wide profiling in 125 diverse cell and tissue types. We identify ~2.9 million DHSs that encompass virtually all known experimentally-validated cis-regulatory sequences and expose a vast trove of novel elements, most with highly cell-selective regulation. Annotating these elements using ENCODE data reveals novel relationships between chromatin accessibility, transcription, DNA methylation, and regulatory factor occupancy patterns. We connect ~580,000 distal DHSs with their target promoters, revealing systematic pairing of different classes of distal DHSs and specific promoter types. Patterning of chromatin accessibility at many regulatory regions is choreographed with dozens to hundreds of co-activated elements, and the trans-cellular DNaseI sensitivity pattern at a given region can predict cell type-specific functional behaviors. The DHS landscape shows signatures of recent functional evolutionary constraint. However, the DHS compartment in pluripotent and immortalized cells exhibits higher mutation rates than that in highly differentiated cells, exposing an unexpected link between chromatin accessibility, proliferative potential and patterns of human variation
Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project
We report the generation and analysis of functional data from multiple, diverse experiments performed on a targeted 1% of the human genome as part of the pilot phase of the ENCODE Project. These data have been further integrated and augmented by a number of evolutionary and computational analyses. Together, our results advance the collective knowledge about human genome function in several major areas. First, our studies provide convincing evidence that the genome is pervasively transcribed, such that the majority of its bases can be found in primary transcripts, including non-protein-coding transcripts, and those that extensively overlap one another. Second, systematic examination of transcriptional regulation has yielded new understanding about transcription start sites, including their relationship to specific regulatory sequences and features of chromatin accessibility and histone modification. Third, a more sophisticated view about chromatin structure has emerged, including its interrelationship with DNA replication and transcriptional regulation. Finally, integration of these new sources of information, in particular with respect to mammalian evolution based on inter- and intra-species sequence comparisons, has yielded novel mechanistic and evolutionary insights about the functional landscape of the human genome. Together, these studies are defining a path forward to pursue a more-comprehensive characterisation of human genome function
- …