146 research outputs found

    Lunar Glovebox Balance with Wireless Technology

    Get PDF
    The most important equipment required for processing lunar samples is a high-quality mass balance for maintaining accurate weight inventory, security, and scientific study. After careful review, a Curation Office memo by Michael Duke in 1978 chose the Mettler PL200 to be used for sample weight measurements inside the gloveboxes (Fig. 3). These commercial off-the-shelf (COTS) balances did not meet the strict accepted material requirements in the Lunar lab. As a result, each balance housing, weighing pan, and wiring was custom retrofitted to meet Lunar Operating Procedure (LOP) 54 requirements [for material construction restrictions]. The original design drawings for the custom housings, readout support stands, and wiring were done by the JSC engineering directorate. The 1977- 1978 schematics, drawings, and files are now housed in the curation Data Center. Per the design specifications, the housing was fabricated from aluminum grade 6061 T6, seamless welds, and anodized per MIL-A-8625 type I, class I. The balance feet were TFE Teflon and any required joints were sealed with Viton A gaskets. The readout display and support stands outside the glovebox were fabricated from 300 series stainless steel with #4 finish and mounted to the glovebox with welded bolts. Wire harnesses that linked the balance with the outside display and power were encapsulated with TFE Teflon and transported through custom Deutsch wire bulk head pass-through systems from inside to outside the glovebox. These Deutsch connectors were custom fabricated with 316L stainless steel bodies, Viton A O-rings, aluminum 6061 with electroless nickel plating, Teflon (replacing the silicone), and gold crimp connectors (no soldering). Many of the Deutsch connectors may have been used in the Apollo program high vacuum complex in building 37 and date to about 1968 to 1970

    The Acquisition, Containment, and Curation of Mars Samples on Earth

    Get PDF
    The Astromaterials Acquisition and Curation Office at NASA Johnson Space Center (henceforth AACO) is responsible for receiving and curating all of NASAs extraterrestrial samples, current and future (as per NASA Policy Directive (NPD) 7100.10E Curation of Extraterrestrial Materials). As such, the AACO coordinates sample capture, containment, and transportation to the curation facility as well as documents, preserves, prepares, and distributes all of the samples within NASAs astromaterial collections for research, education, and public outreach. Since the lunar rock and soil samples returned during the Apollo Program, NASAs first Class V Restricted Earth Return Missions, the AACO curates six other astromaterials collections. Lessons learned from each collection and respective missions (e.g. Apollo, Genesis, Stardust) as well as advancements in science and technology have informed the AACOs plan for acquiring and curating Martian samples. Given the nature of the collection, a mobile and modular facility is recommended. The two broad requirements a Mars sample facility must maintain are: 1) the ability to contain the samples to protect the public from exposure of an unknown unknown biological agent and 2) ensure the scientific integrity of the samples are maintained (while maximizing scientific outcome). Although Apollo samples were eventually deemed safe and released to the scientific community for evaluation, there is no guarantee that this will be the case for Martian samples. Therefore, the facility in which the samples will be contained and investigated must be modular and able to accommodate an array of instrumentation that could be highly variable depending on the initial scientific outcomes. Furthermore, in order to facilitate proper sample capture and containment upon landing as well as sample distribution to other laboratories with proper containment, a mobile facility is a valuable investment

    Mobile/Modular BSL-4 Containment Facilities Integrated into a Curation Receiving Laboratory for Restricted Earth Return Missions

    Get PDF
    NASA robotic sample return missions designated Category V Restricted Earth Return by the NASA Planetary Protection (PP) Office require sample containment and biohazard testing upon return to Earth. Since the 1960s, sample containment from an unknown extraterrestrial biohazard have been related to the highest containment standards and protocols known to modern science. Today, this is Biosafety Level (BSL) 4 containment. In the U.S., the Biosafety in Microbiological and Biomedical Laboratories publication authored by the U.S. Department of Health and Human Services (HHS): Public Health Service, Centers for Disease Control and Prevention, and the National Institutes of Health houses the primary recommendations, standards, and design requirements for all BSL labs. Past mission concept studies for constructing a NASA Curation Receiving Laboratory with an integrated BSL-4 quarantine and biohazard testing facility have been estimated in the hundreds of millions of dollars (USD). As an alternative option, we have conducted a trade study for constructing a mobile and/or modular sample containment laboratory that would meet all BSL-4 and planetary protection standards and protocols at a fraction of the cost. Mobile and modular BSL-2 and 3 facilities have been successfully constructed and deployed world-wide for government testing of pathogens and pharmaceutical production. Our study showed that a modular BSL-4 construction could result in ~ 90% cost reduction when compared to traditional BSL-4 construction methods without compromising the preservation of the samples or Earth. For the design/construction requirements of a mobile/modular BSL-4 containment, we used the established HHS document standards and protocols for manipulation of agents in Class III Biosafety Cabinets (BSC; i.e., negative pressure gloveboxes) that are currently followed in operational BSL-4 facilities in the U.S

    Methane emissions from underground gas storage in California

    Get PDF
    Accurate and timely detection, quantification, and attribution of methane emissions from Underground Gas Storage (UGS) facilities is essential for improving confidence in greenhouse gas inventories, enabling emission mitigation by facility operators, and supporting efforts to assess facility integrity and safety. We conducted multiple airborne surveys of the 12 active UGS facilities in California between January 2016 and November 2017 using advanced remote sensing and in situ observations of near-surface atmospheric methane (CH₄). These measurements where combined with wind data to derive spatially and temporally resolved methane emission estimates for California UGS facilities and key components with spatial resolutions as small as 1–3 m and revisit intervals ranging from minutes to months. The study spanned normal operations, malfunctions, and maintenance activity from multiple facilities including the active phase of the Aliso Canyon blowout incident in 2016 and subsequent return to injection operations in summer 2017. We estimate that the net annual methane emissions from the UGS sector in California averaged between 11.0 ± 3.8 GgCH₄ yr⁻¹ (remote sensing) and 12.3 ± 3.8 GgCH₄ yr⁻¹ (in situ). Net annual methane emissions for the 7 facilities that reported emissions in 2016 were estimated between 9.0 ± 3.2 GgCH₄ yr⁻¹ (remote sensing) and 9.5 ± 3.2 GgCH₄ yr⁻¹ (in situ), in both cases around 5 times higher than reported. The majority of methane emissions from UGS facilities in this study are likely dominated by anomalous activity: higher than expected compressor loss and leaking bypass isolation valves. Significant variability was observed at different time-scales: daily compressor duty-cycles and infrequent but large emissions from compressor station blow-downs. This observed variability made comparison of remote sensing and in situ observations challenging given measurements were derived largely at different times, however, improved agreement occurred when comparing simultaneous measurements. Temporal variability in emissions remains one of the most challenging aspects of UGS emissions quantification, underscoring the need for more systematic and persistent methane monitoring

    California’s methane super-emitters

    Get PDF
    Methane is a powerful greenhouse gas and is targeted for emissions mitigation by the US state of California and other jurisdictions worldwide. Unique opportunities for mitigation are presented by point-source emitters—surface features or infrastructure components that are typically less than 10 metres in diameter and emit plumes of highly concentrated methane. However, data on point-source emissions are sparse and typically lack sufficient spatial and temporal resolution to guide their mitigation and to accurately assess their magnitude4. Here we survey more than 272,000 infrastructure elements in California using an airborne imaging spectrometer that can rapidly map methane plumes. We conduct five campaigns over several months from 2016 to 2018, spanning the oil and gas, manure-management and waste-management sectors, resulting in the detection, geolocation and quantification of emissions from 564 strong methane point sources. Our remote sensing approach enables the rapid and repeated assessment of large areas at high spatial resolution for a poorly characterized population of methane emitters that often appear intermittently and stochastically. We estimate net methane point-source emissions in California to be 0.618 teragrams per year (95 per cent confidence interval 0.523–0.725), equivalent to 34–46 per cent of the state’s methane inventory for 2016. Methane ‘super-emitter’ activity occurs in every sector surveyed, with 10 per cent of point sources contributing roughly 60 per cent of point-source emissions—consistent with a study of the US Four Corners region that had a different sectoral mix. The largest methane emitters in California are a subset of landfills, which exhibit persistent anomalous activity. Methane point-source emissions in California are dominated by landfills (41 per cent), followed by dairies (26 per cent) and the oil and gas sector (26 per cent). Our data have enabled the identification of the 0.2 per cent of California’s infrastructure that is responsible for these emissions. Sharing these data with collaborating infrastructure operators has led to the mitigation of anomalous methane-emission activity

    Science and Curation Considerations for the Design of a Mars Sample Return (MSR) Sample Receiving Facility

    Get PDF
    The most important single element of the “ground system” portion of a Mars Sample Return (MSR) Campaign is a facility referred to as the Sample Receiving Facility (SRF), which would need to be designed and equipped to receive the returned spacecraft, extract and open the sealed sample container, extract the samples from the sample tubes, and implement a set of evaluations and analyses of the samples. One of the main findings of the first MSR Sample Planning Group (MSPG, 2019a) states that “The scientific community, for reasons of scientific quality, cost, and timeliness, strongly prefers that as many sample-related investigations as possible be performed in PI-led laboratories outside containment.” There are many scientific and technical reasons for this preference, including the ability to utilize advanced and customized instrumentation that may be difficult to reproduce inside in a biocontained facility, and the ability to allow multiple science investigators in different labs to perform similar or complementary analyses to confirm the reproducibility and accuracy of results. It is also reasonable to assume that there will be a desire for the SRF to be as efficient and economical as possible, while still enabling the objectives of MSR to be achieved. For these reasons, MSPG concluded, and MSPG2 agrees, that the SRF should be designed to accommodate only those analytical activities that could not reasonably be done in outside laboratories because they are time- or sterilization-sensitive, are necessary for the Sample Safety Assessment Protocol (SSAP), or are necessary parts of the initial sample characterization process that would allow subsamples to be effectively allocated for investigation. All of this must be accommodated in an SRF, while preserving the scientific value of the samples through maintenance of strict environmental and contamination control standards

    Preliminary Planning for Mars Sample Return (MSR) Curation Activities in a Sample Receiving Facility

    Get PDF
    The Mars Sample Return Planning Group 2 (MSPG2) was tasked with identifying the steps that encompass all the curation activities that would happen within the MSR Sample Receiving Facility (SRF) and any anticipated curation-related requirements. An area of specific interest is the necessary analytical instrumentation. The SRF would be a Biosafety Level-4 facility where the returned MSR flight hardware would be opened, the sample tubes accessed, and the martian sample material extracted from the tubes. Characterization of the essential attributes of each sample would be required to provide enough information to prepare a sample catalog used in guiding the preparation of sample-related proposals by the world’s research community and informing decisions by the sample allocation committee. The sample catalog would be populated with data and information generated during all phases of activity, including data derived concurrent with Mars 2020 sample-collecting rover activity, sample transport to Earth, and initial sample characterization within the SRF. We conclude that initial sample characterization can best be planned as a set of three sequential phases, which we have called Pre-Basic Characterization (Pre-BC), Basic Characterization (BC), and Preliminary Examination (PE), each of which requires a certain amount of instrumentation. Data on specific samples and subsamples obtained during sample safety assessments and time-sensitive scientific investigations would also be added to the catalog. There are several areas where future work would be beneficial to prepare for the receipt of samples, which would include the design of a sample tube isolation chamber and a strategy for opening the sample tubes and removing dust from the tube exteriors

    The Scientific Importance of Returning Airfall Dust as a Part of Mars Sample Return (MSR)

    Get PDF
    Dust transported in the martian atmosphere is of intrinsic scientific interest and has relevance for the planning of human missions in the future. The MSR Campaign, as currently designed, presents an important opportunity to return serendipitous, airfall dust. The tubes containing samples collected by the Perseverance rover would be placed in cache depots on the martian surface perhaps as early as 2023–24 for recovery by a subsequent mission no earlier than 2028–29, and possibly as late as 2030–31. Thus, the sample tube surfaces could passively collect dust for multiple years. This dust is deemed to be exceptionally valuable as it would inform our knowledge and understanding of Mars’ global mineralogy, surface processes, surface-atmosphere interactions, and atmospheric circulation. Preliminary calculations suggest that the total mass of such dust on a full set of tubes could be as much as 100 mg and, therefore, sufficient for many types of laboratory analyses. Two planning steps would optimize our ability to take advantage of this opportunity: (1) the dust-covered sample tubes should be loaded into the Orbiting Sample container (OS) with minimal cleaning and (2) the capability to recover this dust early in the workflow within an MSR Sample Receiving Facility (SRF) would need to be established. A further opportunity to advance dust/atmospheric science using MSR, depending upon the design of the MSR Campaign elements, may lie with direct sampling and the return of airborne dust

    Final Report of the MSR Science Planning Group 2 (MSPG2)

    Get PDF
    The Mars Sample Return (MSR) Campaign must meet a series of scientific and technical achievements to be successful. While the respective engineering responsibilities to retrieve the samples have been formalized through a Memorandum of Understanding between ESA and NASA, the roles and responsibilities of the scientific elements have yet to be fully defined. In April 2020, ESA and NASA jointly chartered the MSR Science Planning Group 2 (MSPG2) to build upon previous planning efforts in defining 1) an end-to-end MSR Science Program and 2) needed functionalities and design requirements for an MSR Sample Receiving Facility (SRF). The challenges for the first samples brought from another planet include not only maintaining and providing samples in pristine condition for study, but also maintaining biological containment until the samples meet sample safety criteria for distribution outside of biocontainment. The MSPG2 produced six reports outlining 66 findings. Abbreviated versions of the five additional high-level MSPG2 summary findings are: Summary-1. A long-term NASA/ESA MSR Science Program, along with the necessary funding and human resources, will be required to accomplish the end-to-end scientific objectives of MSR. Summary-2. MSR curation will need to be done concurrently with Biosafety Level-4 containment. This would lead to complex first-of-a-kind curation implementations and require further technology development. Summary-3. Most aspects of MSR sample science can, and should, be performed on samples deemed safe in laboratories outside of the SRF. However, other aspects of MSR sample science are both time-sensitive and sterilization-sensitive and would need to be carried out in the SRF. Summary-4. To meet the unique science, curation, and planetary protection needs of MSR, substantial analytical and sample management capabilities would be required in an SRF. Summary-5. Because of the long lead-time for SRF design, construction, and certification, it is important that preparations begin immediately, even if there is delay in the return of samples

    Rationale and Proposed Design for a Mars Sample Return (MSR) Science Program

    Get PDF
    The Mars Sample Return (MSR) Campaign represents one of the most ambitious scientific endeavors ever undertaken. Analyses of the martian samples would offer unique science benefits that cannot be attained through orbital or landed missions that rely only on remote sensing and in situ measurements, respectively. As currently designed, the MSR Campaign comprises a number of scientific, technical, and programmatic bodies and relationships, captured in a series of existing and anticipated documents. Ensuring that all required scientific activities are properly designed, managed, and executed would require significant planning and coordination. Because there are multiple scientific elements that would need to be executed to achieve MSR Campaign success, it is critical to ensure that the appropriate management, oversight, planning, and resources are made available to accomplish them. This could be achieved via a formal MSR Science Management Plan (SMP). A subset of the MSR Science Planning Group 2 (MSPG2)—termed the SMP Focus Group—was tasked to develop inputs for an MSR Campaign SMP. The scope is intended to cover the interface to the Mars 2020 mission, science elements in the MSR flight program, ground-based science infrastructure, MSR science opportunities, and the MSR sample and science data management. In this report, a comprehensive MSR Science Program is proposed that comprises specific science bodies and/or activities that could be implemented to address the science functionalities throughout the MSR Campaign. The proposed structure was designed by taking into consideration previous management review processes, a set of guiding principles, and key lessons learned from previous robotic exploration and sample return missions
    corecore