168 research outputs found
Recommended from our members
Real-time Doppler-assisted tomography of microstructured fibers by side-scattering.
We introduce the concept of Doppler-assisted tomography (DAT) and show that it can be applied successfully to non-invasive imaging of the internal microstructure of a photonic crystal fiber. The fiber is spun at ~10 Hz around its axis and laterally illuminated with a laser beam. Monitoring the time-dependent Doppler shift of the light scattered by the hollow channels permits the azimuthal angle and radial position of individual channels to be measured. An inverse Radon transform is used to construct an image of the microstructure from the frequency-modulated scattered signal. We also show that DAT can image sub-wavelength features and monitor the structure along a tapered fiber, which is not possible using other techniques without cutting up the taper into several short pieces or filling it with index-matching oil. The non-destructive nature of DAT means that it could potentially be applied to image the fiber microstructure as it emerges from the drawing tower, or indeed to carry out tomography on any transparent microstructured cylindrical object
Performance-limiting nanoscale trap clusters at grain junctions in halide perovskites.
Halide perovskite materials have promising performance characteristics for low-cost optoelectronic applications. Photovoltaic devices fabricated from perovskite absorbers have reached power conversion efficiencies above 25 per cent in single-junction devices and 28 per cent in tandem devices1,2. This strong performance (albeit below the practical limits of about 30 per cent and 35 per cent, respectively3) is surprising in thin films processed from solution at low-temperature, a method that generally produces abundant crystalline defects4. Although point defects often induce only shallow electronic states in the perovskite bandgap that do not affect performance5, perovskite devices still have many states deep within the bandgap that trap charge carriers and cause them to recombineΒ non-radiatively. These deep trap statesΒ thus induce local variations in photoluminescence and limit the device performance6. The origin and distribution of these trap states are unknown, but they have been associated with light-induced halide segregation in mixed-halide perovskite compositions7 and with local strain8, both of which make devices less stable9. Here we use photoemission electron microscopy to image the trap distribution in state-of-the-art halide perovskite films. Instead of a relatively uniform distribution within regions of poor photoluminescence efficiency, we observe discrete, nanoscale trap clusters. By correlating microscopy measurements with scanning electron analytical techniques, we find that these trap clusters appear at the interfaces between crystallographically and compositionally distinct entities. Finally, by generating time-resolved photoemission sequences of the photo-excited carrier trapping process10,11, we reveal a hole-trapping character with the kinetics limited by diffusion of holes to the local trap clusters. Our approach shows that managing structure and composition on the nanoscale will be essential for optimal performance of halide perovskite devices
Antibody levels following vaccination against SARS-CoV-2: associations with post-vaccination infection and risk factors
SARS-CoV-2 antibody levels can be used to assess humoral immune responses following SARS-CoV-2 infection or vaccination, and may predict risk of future infection. From cross-sectional antibody testing of 9,361 individuals from TwinsUK and ALSPAC UK population-based longitudinal studies (jointly in April-May 2021, and TwinsUK only in November 2021-January 2022), we tested associations between antibody levels following vaccination and: (1) SARS-CoV-2 infection following vaccination(s); (2) health, socio-demographic, SARS-CoV-2 infection and SARS-CoV-2 vaccination variables. Within TwinsUK, single-vaccinated individuals with the lowest 20% of anti-Spike antibody levels at initial testing had 3-fold greater odds of SARS-CoV-2 infection over the next six to nine months, compared to the top 20%. In TwinsUK and ALSPAC, individuals identified as at increased risk of COVID-19 complication through the UK "Shielded Patient List" had consistently greater odds (2 to 4-fold) of having antibody levels in the lowest 10%. Third vaccination increased absolute antibody levels for almost all individuals, and reduced relative disparities compared with earlier vaccinations. These findings quantify the association between antibody level and risk of subsequent infection, and support a policy of triple vaccination for the generation of protective antibodies
International Veterinary Epilepsy Task Force consensus proposal: Medical treatment of canine epilepsy in Europe
In Europe, the number of antiepileptic drugs (AEDs) licensed for dogs has grown considerably over the last years. Nevertheless, the same questions remain, which include, 1) when to start treatment, 2) which drug is best used initially, 3) which adjunctive AED can be advised if treatment with the initial drug is unsatisfactory, and 4) when treatment changes should be considered. In this consensus proposal, an overview is given on the aim of AED treatment, when to start long-term treatment in canine epilepsy and which veterinary AEDs are currently in use for dogs. The consensus proposal for drug treatment protocols, 1) is based on current published evidence-based literature, 2) considers the current legal framework of the cascade regulation for the prescription of veterinary drugs in Europe, and 3) reflects the authorsβ experience. With this paper it is aimed to provide a consensus for the management of canine idiopathic epilepsy. Furthermore, for the management of structural epilepsy AEDs are inevitable in addition to treating the underlying cause, if possible
Gene set enrichment analysis of microarray data from Pimephales promelas (Rafinesque), a non-mammalian model organism
<p>Abstract</p> <p>Background</p> <p>Methods for gene-class testing, such as Gene Set Enrichment Analysis (GSEA), incorporate biological knowledge into the analysis and interpretation of microarray data by comparing gene expression patterns to pathways, systems and emergent phenotypes. However, to use GSEA to its full capability with non-mammalian model organisms, a microarray platform must be annotated with human gene symbols. Doing so enables the ability to relate a model organism's gene expression, in response to a given treatment, to potential human health consequences of that treatment. We enhanced the annotation of a microarray platform from a non-mammalian model organism, and then used the GSEA approach in a reanalysis of a study examining the biological significance of acute and chronic methylmercury exposure on liver tissue of fathead minnow (<it>Pimephales promelas</it>). Using GSEA, we tested the hypothesis that fathead livers, in response to methylmercury exposure, would exhibit gene expression patterns similar to diseased human livers.</p> <p>Results</p> <p>We describe an enhanced annotation of the fathead minnow microarray platform with human gene symbols. This resource is now compatible with the GSEA approach for gene-class testing. We confirmed that GSEA, using this enhanced microarray platform, is able to recover results consistent with a previous analysis of fathead minnow exposure to methylmercury using standard analytical approaches. Using GSEA to compare fathead gene expression profiles to human phenotypes, we also found that fathead methylmercury-treated livers exhibited expression profiles that are homologous to human systems & pathways and results in damage that is similar to those of human liver damage associated with hepatocellular carcinoma and hepatitis B.</p> <p>Conclusions</p> <p>This study describes a powerful resource for enabling the use of non-mammalian model organisms in the study of human health significance. Results of microarray gene expression studies involving fathead minnow, typically used for aquatic ecological toxicology studies, can now be used to generate hypotheses regarding consequences of contaminants and other stressors on humans. The same approach can be used with other model organisms with microarray platforms annotated in a similar manner.</p
Fios e desafios da atenção Γ saΓΊde da crianΓ§a no estado do EspΓrito Santo: anΓ‘lise da mortalidade de zero a cinco anos com gestores do Programa Estadual de SaΓΊde da Mulher e da CrianΓ§a
Trata-se de um estudo de abordagem qualitativa que objetivou discutir a mortalidade de zero a cinco anos, no estado do EspΓrito Santo, no lapso de agosto de 2011 a agosto de 2012, a partir de matΓ©rias veiculadas por um jornal diΓ‘rio da mΓdia impressa de grande circulação, a saber A Gazeta. As referidas matΓ©rias constituΓram uma hemeroteca que subsidiou a criação de um painel reprogrΓ‘fico. Os sujeitos da investigação foram os tΓ©cnicos que compΓ΅em a equipe da Coordenação do Programa Estadual de SaΓΊde da Mulher e da CrianΓ§a, e a produção do material de estudo se deu a partir da anΓ‘lise de um grupo focal, com roteiro semiestruturado, tendo como partida a anΓ‘lise de uma cΓ³pia do painel contendo todas as mΓ‘terias. Todo o material foi gravado e filmado. A AnΓ‘lise Institutucional foi a baliza norteadora de toda a elaboração e descrição do estudo. Conforme preconiza este quadro teΓ³rico proposto por Lourau, a etapa final do projeto constituiu-se em uma restituição concreta parte do procedimento cientΓfico, tratando-se da discussΓ£o das produçáes na pesquisa com os interessados, de modo a possibilitar a sua interferΓͺncia direta neste processo. O estudo demonstrou que os sujeitos, a partir do dispositivo analisador natural, a morte de crianΓ§as menores de cinco anos, conseguiram fazer uma reflexΓ£o sobre o quanto Γ© necessΓ‘rio buscar uma interlocução com os demais setores e perceber que a anΓ‘lise institucional, com sua potΓͺncia de provocar a autoanΓ‘lise e a autogestΓ£o, proporcionou-lhes uma possibilidade de repensar seus processos de trabalho na atenção Γ saΓΊde da crianΓ§a
Calcium-Dependent Increases in Protein Kinase-A Activity in Mouse Retinal Ganglion Cells Are Mediated by Multiple Adenylate Cyclases
Neurons undergo long term, activity dependent changes that are mediated by activation of second messenger cascades. In particular, calcium-dependent activation of the cyclic-AMP/Protein kinase A signaling cascade has been implicated in several developmental processes including cell survival, axonal outgrowth, and axonal refinement. The biochemical link between calcium influx and the activation of the cAMP/PKA pathway is primarily mediated through adenylate cyclases. Here, dual imaging of intracellular calcium concentration and PKA activity was used to assay the role of different classes of calcium-dependent adenylate cyclases (ACs) in the activation of the cAMP/PKA pathway in retinal ganglion cells (RGCs). Surprisingly, depolarization-induced calcium-dependent PKA transients persist in barrelless mice lacking AC1, the predominant calcium-dependent adenylate cyclase in RGCs, as well as in double knockout mice lacking both AC1 and AC8. Furthermore, in a subset of RGCs, depolarization-induced PKA transients persist during the inhibition of all transmembrane adenylate cyclases. These results are consistent with the existence of a soluble adenylate cyclase that plays a role in calcium-dependent activation of the cAMP/PKA cascade in neurons
Caenorhabditis elegans Genomic Response to Soil Bacteria Predicts Environment-Specific Genetic Effects on Life History Traits
With the post-genomic era came a dramatic increase in high-throughput technologies, of which transcriptional profiling by microarrays was one of the most popular. One application of this technology is to identify genes that are differentially expressed in response to different environmental conditions. These experiments are constructed under the assumption that the differentially expressed genes are functionally important in the environment where they are induced. However, whether differential expression is predictive of functional importance has yet to be tested. Here we have addressed this expectation by employing Caenorhabditis elegans as a model for the interaction of native soil nematode taxa and soil bacteria. Using transcriptional profiling, we identified candidate genes regulated in response to different bacteria isolated in association with grassland nematodes or from grassland soils. Many of the regulated candidate genes are predicted to affect metabolism and innate immunity suggesting similar genes could influence nematode community dynamics in natural systems. Using mutations that inactivate 21 of the identified genes, we showed that most contribute to lifespan and/or fitness in a given bacterial environment. Although these bacteria may not be natural food sources for C. elegans, we show that changes in food source, as can occur in environmental disturbance, can have a large effect on gene expression, with important consequences for fitness. Moreover, we used regression analysis to demonstrate that for many genes the degree of differential gene expression between two bacterial environments predicted the magnitude of the effect of the loss of gene function on life history traits in those environments
Automated Detection of External Ventricular and Lumbar Drain-Related Meningitis Using Laboratory and Microbiology Results and Medication Data
OBJECTIVE: Monitoring of healthcare-associated infection rates is important for infection control and hospital benchmarking. However, manual surveillance is time-consuming and susceptible to error. The aim was, therefore, to develop a prediction model to retrospectively detect drain-related meningitis (DRM), a frequently occurring nosocomial infection, using routinely collected data from a clinical data warehouse. METHODS: As part of the hospital infection control program, all patients receiving an external ventricular (EVD) or lumbar drain (ELD) (2004 to 2009; n = 742) had been evaluated for the development of DRM through chart review and standardized diagnostic criteria by infection control staff; this was the reference standard. Children, patients dying <24 hours after drain insertion or with <1 day follow-up and patients with infection at the time of insertion or multiple simultaneous drains were excluded. Logistic regression was used to develop a model predicting the occurrence of DRM. Missing data were imputed using multiple imputation. Bootstrapping was applied to increase generalizability. RESULTS: 537 patients remained after application of exclusion criteria, of which 82 developed DRM (13.5/1000 days at risk). The automated model to detect DRM included the number of drains placed, drain type, blood leukocyte count, C-reactive protein, cerebrospinal fluid leukocyte count and culture result, number of antibiotics started during admission, and empiric antibiotic therapy. Discriminatory power of this model was excellent (area under the ROC curve 0.97). The model achieved 98.8% sensitivity (95% CI 88.0% to 99.9%) and specificity of 87.9% (84.6% to 90.8%). Positive and negative predictive values were 56.9% (50.8% to 67.9%) and 99.9% (98.6% to 99.9%), respectively. Predicted yearly infection rates concurred with observed infection rates. CONCLUSION: A prediction model based on multi-source data stored in a clinical data warehouse could accurately quantify rates of DRM. Automated detection using this statistical approach is feasible and could be applied to other nosocomial infections
- β¦