357 research outputs found

    Tracking disease outbreaks from sparse data with Bayesian inference

    Full text link
    The COVID-19 pandemic provides new motivation for a classic problem in epidemiology: estimating the empirical rate of transmission during an outbreak (formally, the time-varying reproduction number) from case counts. While standard methods exist, they work best at coarse-grained national or state scales with abundant data, and struggle to accommodate the partial observability and sparse data common at finer scales (e.g., individual schools or towns). For example, case counts may be sparse when only a small fraction of infections are caught by a testing program. Or, whether an infected individual tests positive may depend on the kind of test and the point in time when they are tested. We propose a Bayesian framework which accommodates partial observability in a principled manner. Our model places a Gaussian process prior over the unknown reproduction number at each time step and models observations sampled from the distribution of a specific testing program. For example, our framework can accommodate a variety of kinds of tests (viral RNA, antibody, antigen, etc.) and sampling schemes (e.g., longitudinal or cross-sectional screening). Inference in this framework is complicated by the presence of tens or hundreds of thousands of discrete latent variables. To address this challenge, we propose an efficient stochastic variational inference method which relies on a novel gradient estimator for the variational objective. Experimental results for an example motivated by COVID-19 show that our method produces an accurate and well-calibrated posterior, while standard methods for estimating the reproduction number can fail badly

    Convective Fingering of an Autocatalytic Reaction Front

    Full text link
    We report experimental observations of the convection-driven fingering instability of an iodate-arsenous acid chemical reaction front. The front propagated upward in a vertical slab; the thickness of the slab was varied to control the degree of instability. We observed the onset and subsequent nonlinear evolution of the fingers, which were made visible by a {\it p}H indicator. We measured the spacing of the fingers during their initial stages and compared this to the wavelength of the fastest growing linear mode predicted by the stability analysis of Huang {\it et. al.} [{\it Phys. Rev. E}, {\bf 48}, 4378 (1993), and unpublished]. We find agreement with the thickness dependence predicted by the theory.Comment: 11 pages, RevTex with 3 eps figures. To be published in Phys Rev E, [email protected], [email protected], [email protected]

    Upgrades and Modifications of the NASA Ames HFFAF Ballistic Range

    Get PDF
    The NASA Ames Hypervelocity Free Flight Aerodynamics Facility ballistic range is described. The various configurations of the shadowgraph stations are presented. This includes the original stations with film and configurations with two different types of digital cameras. Resolution tests for the 3 shadowgraph station configurations are described. The advantages of the digital cameras are discussed, including the immediate availability of the shadowgraphs. The final shadowgraph station configuration is a mix of 26 Nikon cameras and 6 PI-MAX2 cameras. Two types of trigger light sheet stations are described visible and IR. The two gunpowders used for the NASA Ames 6.251.50 light gas guns are presented. These are the Hercules HC-33-FS powder (no longer available) and the St. Marks Powder WC 886 powder. The results from eight proof shots for the two powders are presented. Both muzzle velocities and piston velocities are 5 9 lower for the new St. Marks WC 886 powder than for the old Hercules HC-33-FS powder (no longer available). The experimental and CFD (computational) piston and muzzle velocities are in good agreement. Shadowgraph-reading software that employs template-matching pattern recognition to locate the ballistic-range model is described. Templates are generated from a 3D solid model of the ballistic-range model. The accuracy of the approach is assessed using a set of computer-generated test images

    Sympathetic nervous regulation of calcium and action potential alternans in the intact heart

    Get PDF
    Rationale: Arrhythmogenic cardiac alternans are thought to be an important determinant for the initiation of ventricular fibrillation. There is limited information on the effects of sympathetic nerve stimulation (SNS) on alternans in the intact heart and the conclusions of existing studies, focused on investigating electrical alternans, are conflicted. Meanwhile, several lines of evidence implicate instabilities in Ca handling, not electrical restitution, as the primary mechanism underpinning alternans. Despite this, there have been no studies on Ca alternans and SNS in the intact heart. The present study sought to address this, by application of voltage and Ca optical mapping for the simultaneous study of APD and Ca alternans in the intact guinea pig heart during direct SNS. Objective: To determine the effects of SNS on APD and Ca alternans in the intact guinea pig heart and to examine the mechanism(s) by which the effects of SNS are mediated. Methods and Results: Studies utilized simultaneous voltage and Ca optical mapping in isolated guinea pig hearts with intact innervation. Alternans were induced using a rapid dynamic pacing protocol. SNS was associated with rate-independent shortening of action potential duration (APD) and the suppression of APD and Ca alternans, as indicated by a shift in the alternans threshold to faster pacing rates. Qualitatively similar results were observed with exogenous noradrenaline perfusion. In co ntrast with previous reports, both SNS and noradrenaline acted to flatten the slope of the electrical restitution curve. Pharmacological block of the slow delayed rectifying potassium current (I Ks ), sufficient to abolish I Ks -mediated APD-adaptation, partially reversed the effects of SNS on pacing-induced alternans. Treatment with cyclopiazonic acid, an inhibitor of the sarco(endo)plasmic reticulum ATPase, had opposite effects to that of SNS, acting to increase susceptibility to alternans, and suggesting that accelerated Ca reuptake into the sarcoplasmic reticulum is a major mechanism by which SNS suppresses alternans in the guinea pig heart. Conclusions: SNS suppresses calcium and action potential alternans in the intact guinea pig heart by an action mediated through accelerated Ca handling and via increased I Ks

    Consolidated Laser-Induced Fluorescence Diagnostic Systems for the NASA Ames Arc Jet Facilities

    Get PDF
    The spectroscopic diagnostic technique of two photon absorption laser-induced fluorescence (TALIF) of atomic species for non-intrusive arc jet flow property measurement was first implemented at NASA Ames in the mid-1990s. Use of TALIF expanded at NASA Ames and to NASA Johnson's arc jet facility in the late 2000s. In 2013-2014, NASA combined the agency's large-scale arc jet test capabilities at NASA Ames. Concurrent with that effort, the agency also sponsored a project to establish two comprehensive LIF diagnostic systems for the Aerodynamic Heating Facility (AHF) and Interaction Heating Facility (IHF) arc jets. The scope of the project enabled further engineering development of the existing IHF LIF system as well as the complete reconstruction of the original AHF LIF system. The updated LIF systems are identical in design and capability. They represent the culmination of over 20 years of development experience in transitioning a specialized laboratory research tool into a measurement system for large-scale, high-demand test facilities. This paper documents the overall system design from measurement requirements to implementation. Representative data from the redeveloped AHF and IHF LIF systems are also presented

    Shock Tube and Ballistic Range Facilities at NASA Ames Research Center

    Get PDF
    The Electric Arc Shock Tube (EAST) facility and the Hypervelocity Free Flight Aerodynamic Facility (HFFAF) at NASA Ames Research Center are described. These facilities have been in operation since the 1960s and have supported many NASA missions and technology development initiatives. The facilities have world-unique capabilities that enable experimental studies of real-gas aerothermal, gas dynamic, and kinetic phenomena of atmospheric entry

    The lncRNA landscape of breast cancer reveals a role for DSCAM-AS1 in breast cancer progression.

    Get PDF
    Molecular classification of cancers into subtypes has resulted in an advance in our understanding of tumour biology and treatment response across multiple tumour types. However, to date, cancer profiling has largely focused on protein-coding genes, which comprise <1% of the genome. Here we leverage a compendium of 58,648 long noncoding RNAs (lncRNAs) to subtype 947 breast cancer samples. We show that lncRNA-based profiling categorizes breast tumours by their known molecular subtypes in breast cancer. We identify a cohort of breast cancer-associated and oestrogen-regulated lncRNAs, and investigate the role of the top prioritized oestrogen receptor (ER)-regulated lncRNA, DSCAM-AS1. We demonstrate that DSCAM-AS1 mediates tumour progression and tamoxifen resistance and identify hnRNPL as an interacting protein involved in the mechanism of DSCAM-AS1 action. By highlighting the role of DSCAM-AS1 in breast cancer biology and treatment resistance, this study provides insight into the potential clinical implications of lncRNAs in breast cancer
    • …
    corecore