6 research outputs found

    Laquinimod dampens hyperactive cytokine production in Huntington's disease patient myeloid cells.

    Get PDF
    Huntington's disease (HD) is a neurodegenerative condition characterized by pathology in the brain and peripheral tissues. Hyperactivity of the innate immune system, due in part to NF魏B pathway dysregulation, is an early and active component of HD. Evidence suggests targeting immune disruption may slow disease progression. Laquinimod is an orally active immunomodulator that down-regulates proinflammatory cytokine production in peripheral blood mononuclear cells, and in the brain down-regulates astrocytic and microglial activation by modulating NF魏B signalling. Laquinimod had beneficial effects on inflammation, brain atrophy and disease progression in multiple sclerosis (MS) in two phase III clinical trials. This study investigated the effects of laquinimod on hyperactive proinflammatory cytokine release and NF魏B signalling in HD patient myeloid cell cultures. Monocytes from manifest (manHD) and pre-manifest (preHD) HD gene carriers and healthy volunteers (HV) were treated with laquinimod and stimulated with lipopolysaccharide. After 24聽h pre-treatment with 5聽渭M laquinimod, manHD monocytes released lower levels of IL-1尾, IL-5, IL-8, IL-10, IL-13 and TNF伪 in response to stimulation. PreHD monocytes released lower levels of IL-8, IL-10 and IL-13, with no reduction observed in HV monocytes. The effects of laquinimod on dysfunctional NF魏B signalling in HD was assessed by inhibitor of kappa B (I魏B) degradation kinetics, nuclear translocation of NF魏B and interactions between I魏B kinase (IKK) and HTT, in HD myeloid cells. No differences were observed between laquinimod-treated and untreated conditions. These results provide evidence that laquinimod dampens hyper-reactive cytokine release from manHD and preHD monocytes, with a much reduced effect on HV monocytes. Evidence suggests targeting CNS and peripheral immune disruption may slow Huntington's disease (HD) neurodegenerative processes. The effects of laquinimod, an orally active immunomodulator, on hyperactive cytokine release and dysfunctional NF魏B signalling in stimulated myeloid cell cultures from pre-manifest and manifest HD gene carriers and healthy volunteers were investigated. Laquinimod dampened cytokine release but did not impact NF魏B signalling. Read the Editorial Highlight for this article on page 670

    Genetic and functional analyses point to FAN1 as the source of multiple Huntington Disease modifier effects

    Get PDF
    A recent genome-wide association study of Huntington鈥檚 disease (HD) implicated genes involved in DNA maintenance processes as modifiers of onset, including multiple genome-wide significant signals in a chr15 region containing the DNA repair gene FAN1. Here, we have carried out detailed genetic, molecular and cellular investigation of the modifiers at this locus. We find that missense changes within or near the DNA binding domain (p.Arg507His and p.Arg377Trp) reduce FAN1's DNA binding activity and its capacity to rescue mitomycin C-induced cytotoxicity, accounting for two infrequent onset-hastening modifier signals. We also identified a third onset-hastening modifier signal whose mechanism of action remains uncertain but does not involve an amino acid change in FAN1. We present additional evidence that a frequent onset-delaying modifier signal does not alter FAN1 coding sequence but is associated with increased FAN1 mRNA expression in the cerebral cortex. Consistent with these findings and other cellular overexpression/suppression studies, knock out of FAN1 increased CAG repeat expansion in HD induced pluripotent stem cells. Together, these studies support the process of somatic CAG repeat expansion as a therapeutic target in HD, and clearly indicate that multiple genetic variations act by different means through FAN1 to influence HD onset in a manner that is largely additive, except in the rare circumstance that two onset-hastening alleles are present. Thus, an individual鈥檚 particular combination of FAN1 haplotypes may influence their suitability for HD clinical trials, particularly if the therapeutic agent aims to reduce CAG repeat instability

    CAG repeat not polyglutamine length determines timing of Huntington鈥檚 disease onset

    Get PDF
    Variable, glutamine-encoding, CAA interruptions indicate that a property of the uninterrupted HTT CAG repeat sequence, distinct from the length of huntingtin鈥檚 polyglutamine segment, dictates the rate at which Huntington鈥檚 disease (HD) develops. The timing of onset shows no significant association with HTT cis-eQTLs but is influenced, sometimes in a sex-specific manner, by polymorphic variation at multiple DNA maintenance genes, suggesting that the special onset-determining property of the uninterrupted CAG repeat is a propensity for length instability that leads to its somatic expansion. Additional naturally occurring genetic modifier loci, defined by GWAS, may influence HD pathogenesis through other mechanisms. These findings have profound implications for the pathogenesis of HD and other repeat diseases and question the fundamental premise that polyglutamine length determines the rate of pathogenesis in the 鈥減olyglutamine disorders.

    Safety and efficacy of laquinimod for Huntington's disease (LEGATO-HD): a multicentre, randomised, double-blind, placebo-controlled, phase 2 study

    No full text
    Background: Laquinimod modulates CNS inflammatory pathways thought to be involved in the pathology of Huntington's disease. Studies with laquinimod in transgenic rodent models of Huntington's disease suggested improvements in motor function, reduction of brain volume loss, and prolonged survival. We aimed to evaluate the safety and efficacy of laquinimod in improving motor function and reducing caudate volume loss in patients with Huntington's disease. Methods: LEGATO-HD was a multicentre, double-blind, placebo-controlled, phase 2 study done at 48 sites across ten countries (Canada, Czech Republic, Germany, Italy, Netherlands, Portugal, Russia, Spain, UK, and USA). Patients aged 21-55 years with a cytosine-adenosine-guanine (CAG) repeat length of between 36 and 49 who had symptomatic Huntington's disease with a Unified Huntington's Disease Rating Scale-Total Motor Score (UHDRS-TMS) of higher than 5 and a Total Functional Capacity score of 8 or higher were randomly assigned (1:1:1:1) by centralised interactive response technology to laquinimod 0路5 mg, 1路0 mg, or 1路5 mg, or to matching placebo, administered orally once daily over 52 weeks; people involved in the randomisation had no other role in the study. Participants, investigators, and study personnel were masked to treatment assignment. The 1路5 mg group was discontinued before recruitment was finished because of cardiovascular safety concerns in multiple sclerosis studies. The primary endpoint was change from baseline in the UHDRS-TMS and the secondary endpoint was percent change in caudate volume, both comparing the 1路0 mg group with the placebo group at week 52. Primary and secondary endpoints were assessed in the full analysis set (ie, all randomised patients who received at least one dose of study drug and had at least one post-baseline UHDRS-TMS assessment). Safety measures included adverse event frequency and severity, and clinical and laboratory examinations, and were assessed in the safety analysis set (ie, all randomised patients who received at least one dose of study drug). This trial is registered with ClinicalTrials.gov, NCT02215616, and EudraCT, 2014-000418-75, and is now complete. Findings: Between Oct 28, 2014, and June 19, 2018, 352 adults with Huntington's disease (179 [51%] men and 173 [49%] women; mean age 43路9 [SD 7路6] years and 340 [97%] White) were randomly assigned: 107 to laquinimod 0路5 mg, 107 to laquinimod 1路0 mg, 30 to laquinimod 1路5 mg, and 108 to matching placebo. Least squares mean change from baseline in UHDRS-TMS at week 52 was 1路98 (SE 0路83) in the laquinimod 1路0 mg group and 1路2 (0路82) in the placebo group (least squares mean difference 0路78 [95% CI -1路42 to 2路98], p=0路4853). Least squares mean change in caudate volume was 3路10% (SE 0路38) in the 1路0 mg group and 4路86% (0路38) in the placebo group (least squares mean difference -1路76% [95% CI -2路67 to -0路85]; p=0路0002). Laquinimod was well tolerated and there were no new safety findings. Serious adverse events were reported by eight (7%) patients on placebo, seven (7%) on laquinimod 0路5 mg, five (5%) on laquinimod 1路0 mg, and one (3%) on laquinimod 1路5 mg. There was one death, which occurred in the placebo group and was unrelated to treatment. The most frequent adverse events in all laquinimod dosed groups (0路5 mg, 1路0 mg, and 1路5 mg) were headache (38 [16%]), diarrhoea (24 [10%]), fall (18 [7%]), nasopharyngitis (20 [8%]), influenza (15 [6%]), vomiting (13 [5%]), arthralgia (11 [5%]), irritability (ten [4%]), fatigue (eight [3%]), and insomnia (eight [3%]). Interpretation: Laquinimod did not show a significant effect on motor symptoms assessed by the UHDRS-TMS, but significantly reduced caudate volume loss compared with placebo at week 52. Huntington's disease has a chronic and slowly progressive course, and this study does not address whether a longer duration of laquinimod treatment could have produced detectable and meaningful changes in the clinical assessments. Funding: Teva Pharmaceutical Industries

    Cross-ancestry atlas of gene, isoform, and splicing regulation in the developing human brain

    No full text
    INTRODUCTION Genome-wide association studies (GWASs) have identified thousands of loci associated with neurodevelopmental and psychiatric disorders, yet our lack of understanding of the target genes and biological mechanisms underlying these associations remains a major challenge. GWAS signals for many neuropsychiatric disorders, including autism spectrum disorder, schizophrenia, and bipolar disorder, are particularly enriched for gene-regulatory elements active during human brain development. However, the lack of a unified population-scale, ancestrally diverse gene-regulatory atlas of human brain development has been a major obstacle for the functional assessment of top loci and post-GWAS integrative analyses. RATIONALE To address this critical gap in knowledge, we have uniformly processed and systematically characterized gene, isoform, and splicing quantitative trait loci (cumulatively referred to as xQTLs) in the developing human brain across 672 unique samples from 4 to 39 postconception weeks spanning European, African-American, and Latino/admixed American ancestries). With this expanded atlas, we sought to specifically localize the timing and molecular features mediating the greatest proportion of neuropsychiatric GWAS heritability, to prioritize candidate risk genes and mechanisms for top loci, and to compare with analogous results using larger adult brain functional genomic reference panels. RESULTS In total, we identified 15,752 genes harboring a gene, isoform and/or splicing cis-xQTL, including 49 genes associated with four large, recurrent inversions. Highly concordant effect sizes were observed across populations, and our diverse reference panel improved resolution to fine-map underlying candidate causal regulatory variants. Substantially more genes were found to harbor QTLs in the first versus second trimester of brain development, with a notable drop in gene expression and splicing heritability observed from 10 to 18 weeks coinciding with a period of rapidly increasing cellular heterogeneity in the developing brain. Isoform-level regulation, particularly in the second trimester, mediated a greater proportion of heritability across multiple psychiatric GWASs compared with gene expression regulation. Through colocalization and transcriptome-wide association studies, we prioritized biological mechanisms for ~60% of GWAS loci across five neuropsychiatric disorders, with >2-fold more colocalizations observed compared with larger adult brain functional genomic reference panels. We observed convergence between common and rare-variant associations, including a cryptic splicing event in the high-confidence schizophrenia risk gene SP4. Finally, we constructed a comprehensive set of developmentally regulated gene and isoform coexpression networks harboring unique cell-type specificity and genetic enrichments. Leveraging this cell-type specificity, we identified >8000 module interaction QTLs, many of which exhibited additional GWAS colocalizations. Overall, neuropsychiatric GWASs and rare variant signals localized more strongly within maturing excitatory- and interneuron-associated modules compared with those enriched for neural progenitor cell types. Results can be visualized at devbrainhub.gandallab.org. CONCLUSION We have generated a large-scale, cross-population resource of gene, isoform, and splicing regulation in the developing human brain, providing comprehensive developmental and cell-type-informed mechanistic insights into the genetic underpinnings of complex neurodevelopmental and psychiatric disorders
    corecore