276 research outputs found
ArcVIEW: a LabVIEW-based astronomical instrument control system
To meet the needs of the SOAR 4.2-m telescope first-generation instrument suite, as well as new instruments for the Blanco 4-m telescope, we developed a new camera controller system called ArcVIEW. In order to provide a strong foundation and rapid development cycle, we decided to build the system using National Instrument's LabVIEW environment. The advantages of this approach centers on the tools available for rapid prototyping, integration and testing of components. Over the past 2 years, we have taken ArcVIEW from a design document to the point of controlling two new instruments being built at CTIO. The IR imager, ISPI, will complete final testing this semester and go into use on the Blanco telescope in September 2002. The second instrument, the SOAR Optical Imager, is due for completion this semester and will be the commissioning instrument for the SOAR telescope, for which first light is expected in early 2003
Modelling of the electron transfer reactions in Photosystem I by electron tunnelling theory: The phylloquinones bound to the PsaA and the PsaB reaction centre subunits of PS I are almost isoenergetic to the iron–sulfur cluster FX
AbstractPhotosystem I is a large macromolecular complex located in the thylakoid membranes of chloroplasts and in cyanobacteria that catalyses the light driven reduction of ferredoxin and oxidation of plastocyanin. Due to the very negative redox potential of the primary electron transfer cofactors accepting electrons, direct estimation by redox titration of the energetics of the system is hampered. However, the rates of electron transfer reactions are related to the thermodynamic properties of the system. Hence, several spectroscopic and biochemical techniques have been employed, in combination with the classical Marcus theory for electron transfer tunnelling, in order to access these parameters. Nevertheless, the values which have been presented are very variable. In particular, for the case of the tightly bound phylloquinone molecule A1, the values of the redox potentials reported in the literature vary over a range of about 350 mV. Previous models of Photosystem I have assumed a unidirectional electron transfer model. In the present study, experimental evidence obtained by means of time resolved absorption, photovoltage, and electron paramagnetic resonance measurements are reviewed and analysed in terms of a bi-directional kinetic model for electron transfer reactions. This model takes into consideration the thermodynamic equilibrium between the iron–sulfur centre FX and the phylloquinone bound to either the PsaA (A1A) or the PsaB (A1B) subunit of the reaction centre and the equilibrium between the iron–sulfur centres FA and FB. The experimentally determined decay lifetimes in the range of sub-picosecond to the microsecond time domains can be satisfactorily simulated, taking into consideration the edge-to-edge distances between redox cofactors and driving forces reported in the literature. The only exception to this general behaviour is the case of phylloquinone (A1) reoxidation. In order to describe the reported rates of the biphasic decay, of about 20 and 200 ns, associated with this electron transfer step, the redox potentials of the quinones are estimated to be almost isoenergetic with that of the iron sulfur centre FX. A driving force in the range of 5 to 15 meV is estimated for these reactions, being slightly exergonic in the case of the A1B quinone and slightly endergonic, in the case of the A1A quinone. The simulation presented in this analysis not only describes the kinetic data obtained for the wild type samples at room temperature and is consistent with estimates of activation energy by the analysis of temperature dependence, but can also explain the effect of the mutations around the PsaB quinone binding pocket. A model of the overall energetics of the system is derived, which suggests that the only substantially irreversible electron transfer reactions are the reoxidation of A0 on both electron transfer branches and the reduction of FA by FX
Prospective Memory in the Red Zone: Cognitive Control and Capacity Sharing in a Complex, Multi-Stimulus Task
© 2019 American Psychological Association. Remembering to perform a planned action upon encountering a future event requires event-based Prospective Memory (PM). PM is required in many human factors settings in which operators must process a great deal of complex, uncertain information from an interface. We study event-based PM in such an environment. Our task, which previous research has found is very demanding (Palada, Neal, Tay, & Heathcote, 2018), requires monitoring ships as they cross the ocean on a display. We applied the Prospective Memory Decision Control Model (Strickland, Loft, Remington, & Heathcote, 2018) to understand the cognitive mechanisms that underlie PM performance in such a demanding environment. We found evidence of capacity sharing between monitoring for PM items and performing the ongoing surveillance task, whereas studies of PM in simpler paradigms have not (e.g., Strickland et al., 2018). We also found that participants applied proactive and reactive control (Braver, 2012) to adapt to the demanding task environment. Our findings illustrate the value of human factors simulations to study capacity sharing between competing task processes. They also illustrate the value of cognitive models to illuminate the processes underlying adaptive behavior in complex environments
ArcVIEW: a LabVIEW-based astronomical instrument control system
To meet the needs of the SOAR 4.2-m telescope first-generation instrument suite, as well as new instruments for the Blanco 4-m telescope, we developed a new camera controller system called ArcVIEW. In order to provide a strong foundation and rapid development cycle, we decided to build the system using National Instrument's LabVIEW environment. The advantages of this approach centers on the tools available for rapid prototyping, integration and testing of components. Over the past 2 years, we have taken ArcVIEW from a design document to the point of controlling two new instruments being built at CTIO. The IR imager, ISPI, will complete final testing this semester and go into use on the Blanco telescope in September 2002. The second instrument, the SOAR Optical Imager, is due for completion this semester and will be the commissioning instrument for the SOAR telescope, for which first light is expected in early 2003
Inhibitory cognitive control allows automated advice to improve accuracy while minimizing misuse
Humans increasingly use automated decision aids. However, environmental uncertainty means that automated advice can be incorrect, creating the potential for humans to action incorrect advice or to disregard correct advice. We present a quantitative model of the cognitive process by which humans use automation when deciding whether aircraft would violate minimum separation. The model closely fitted the performance of twenty-four participants, whom each made 2400 conflict detection decisions (conflict vs non-conflict), either manually (with no assistance) or with the assistance of 90% reliable automation. When the decision aid was correct, conflict detection accuracy improved, but when the decision aid was incorrect, accuracy and response time were impaired. The model indicated that participants integrated advice into their decision process by inhibiting evidence accumulation toward the task response incongruent with that advice, thereby ensuring that decisions could not be made solely on automated advice without first sampling information from the task environment
MAID : An effect size based model for microarray data integration across laboratories and platforms
<p>Abstract</p> <p>Background</p> <p>Gene expression profiling has the potential to unravel molecular mechanisms behind gene regulation and identify gene targets for therapeutic interventions. As microarray technology matures, the number of microarray studies has increased, resulting in many different datasets available for any given disease. The increase in sensitivity and reliability of measurements of gene expression changes can be improved through a systematic integration of different microarray datasets that address the same or similar biological questions.</p> <p>Results</p> <p>Traditional effect size models can not be used to integrate array data that directly compare treatment to control samples expressed as log ratios of gene expressions. Here we extend the traditional effect size model to integrate as many array datasets as possible. The extended effect size model (MAID) can integrate any array datatype generated with either single or two channel arrays using either direct or indirect designs across different laboratories and platforms. The model uses two standardized indices, the standard effect size score for experiments with two groups of data, and a new standardized index that measures the difference in gene expression between treatment and control groups for one sample data with replicate arrays. The statistical significance of treatment effect across studies for each gene is determined by appropriate permutation methods depending on the type of data integrated. We apply our method to three different expression datasets from two different laboratories generated using three different array platforms and two different experimental designs. Our results indicate that the proposed integration model produces an increase in statistical power for identifying differentially expressed genes when integrating data across experiments and when compared to other integration models. We also show that genes found to be significant using our data integration method are of direct biological relevance to the three experiments integrated.</p> <p>Conclusion</p> <p>High-throughput genomics data provide a rich and complex source of information that could play a key role in deciphering intricate molecular networks behind disease. Here we propose an extension of the traditional effect size model to allow the integration of as many array experiments as possible with the aim of increasing the statistical power for identifying differentially expressed genes.</p
Observing character displacement from process to pattern in a novel vertebrate community
Ecological character displacement, whereby shifts in resource use in the presence of competing species leads to adaptive evolutionary divergence, is widely considered an important process in community assembly and adaptive radiation. However, most evidence for character displacement has been inferred from macro-scale geographic or phylogenetic patterns; direct tests of the underlying hypothesis of divergent natural selection driving character displacement in the wild are rare. Here, we document character displacement between two ecologically similar lizards (Anolis sagrei and A. cristatellus) experiencing novel contact. We identify directional selection during the incipient stages of sympatry in a new community that corresponds to repeated trait divergence across multiple established sympatric communities. By identifying the role of natural selection as character displacement unfolds, we connect how natural selection operating at short timescales may drive broader patterns of trait distributions at larger spatial and temporal scales
Optimising in situ gamma measurements to identify the presence of radioactive particles in land areas
High-coverage in situ surveys with gamma detectors are the best means of identifying small hotspots of activity, such as radioactive particles, in land areas. Scanning surveys can produce rapid results, but the probabilities of obtaining false positive or false negative errors are often unknown, and they may not satisfy other criteria such as estimation of mass activity concentrations. An alternative is to use portable gamma-detectors that are set up at a series of locations in a systematic sampling pattern, where any positive measurements are subsequently followed up in order to determine the exact location, extent and nature of the target source. The preliminary survey is typically designed using settings of detector height, measurement spacing and counting time that are based on convenience, rather than using settings that have been calculated to meet requirements. This paper introduces the basis of a repeatable method of setting these parameters at the outset of a survey, for pre-defined probabilities of false positive and false negative errors in locating spatially small radioactive particles in land areas. It is shown that an un-collimated detector is more effective than a collimated detector that might typically be used in the field
Impacts of Waste from Concentrated Animal Feeding Operations on Water Quality
Waste from agricultural livestock operations has been a long-standing concern with respect to contamination of water resources, particularly in terms of nutrient pollution. However, the recent growth of concentrated animal feeding operations (CAFOs) presents a greater risk to water quality because of both the increased volume of waste and to contaminants that may be present (e.g., antibiotics and other veterinary drugs) that may have both environmental and public health importance. Based on available data, generally accepted livestock waste management practices do not adequately or effectively protect water resources from contamination with excessive nutrients, microbial pathogens, and pharmaceuticals present in the waste. Impacts on surface water sources and wildlife have been documented in many agricultural areas in the United States. Potential impacts on human and environmental health from long-term inadvertent exposure to water contaminated with pharmaceuticals and other compounds are a growing public concern. This work-group, which is part of the Conference on Environmental Health Impacts of Concentrated Animal Feeding Operations: Anticipating Hazards—Searching for Solutions, identified needs for rigorous ecosystem monitoring in the vicinity of CAFOs and for improved characterization of major toxicants affecting the environment and human health. Last, there is a need to promote and enforce best practices to minimize inputs of nutrients and toxicants from CAFOs into freshwater and marine ecosystems
- …