313 research outputs found

    The Cell Cycle Independence of HIV Infections Is Not Determined by Known Karyophilic Viral Elements

    Get PDF
    Human immunodeficiency virus and other lentiviruses infect cells independent of cell cycle progression, but gammaretroviruses, such as the murine leukemia virus (MLV) require passage of cells through mitosis. This property is thought to be important for the ability of HIV to infect resting CD4+ T cells and terminally differentiated macrophages. Multiple and independent redundant nuclear localization signals encoded by HIV have been hypothesized to facilitate migration of viral genomes into the nucleus. The integrase (IN) protein of HIV is one of the HIV elements that targets to the nucleus; however, its role in nuclear entry of virus genomes has been difficult to describe because mutations in IN are pleiotropic. To investigate the importance of the HIV IN protein for infection of non-dividing cells, and to investigate whether or not IN was redundant with other viral signals for cell cycle-independent nuclear entry, we constructed an HIV-based chimeric virus in which the entire IN protein of HIV was replaced by that of MLV. This chimeric virus with a heterologous IN was infectious at a low level, and was able to integrate in an IN-dependent manner. Furthermore, this virus infected non-dividing cells as well as it infected dividing cells. Moreover, we used the chimeric HIV with MLV IN to further eliminate all of the other described nuclear localization signals from an HIV genome—matrix, IN, Viral Protein R, and the central polypurine tract—and show that no combination of the virally encoded NLS is essential for the ability of HIV to infect non-dividing cells

    Trim5 TAKes on Pattern Recognition

    Get PDF
    Retroviral capsids can be recognized and degraded by a host protein, Trim5α. A recent study in Nature (Pertel et al., 2011) shows that, upon sensing of the retrovirus capsid lattice, Trim5α generates free ubiquitin chains that activate the TAK1 kinase and downstream innate immune response genes

    Human Trim5α has additional activities that are uncoupled from retroviral capsid recognition

    Get PDF
    AbstractTrim5α is a host antiviral protein that recognizes incoming retroviral capsids in the cytoplasm and prevents productive infections. Although present in most mammals, the state of the Trim5 gene is dynamic in that primates have one copy with several splice variants, while rodents and cows have multiple copies. Mouse Trim30 (one of the mouse Trim5α homologs) has been shown to negatively regulate NF-kappaB activation by targeting upstream signaling intermediates TAB2 and TAB3 for degradation. We show that human Trim5α also affects levels of TAB2, resulting in abrogation of TAB2-dependent NF-kappaB activation. Surprisingly, unlike mouse Trim30, human and rhesus Trim5α are able to activate NF-kappaB-driven reporter gene expression in a dose-dependent manner. We show that Trim5α uses distinct domains for the distinct abilities of affecting TAB2 levels, regulating NF-kappaB, and recognizing retroviral capsids. Our results demonstrate functions of Trim5α that are not dependent on recognizing the retroviral capsid

    Discordant Evolution of the Adjacent Antiretroviral Genes TRIM22 and TRIM5 in Mammals

    Get PDF
    TRIM5α provides a cytoplasmic block to retroviral infection, and orthologs encoded by some primates are active against HIV. Here, we present an evolutionary comparison of the TRIM5 gene to its closest human paralogs: TRIM22, TRIM34, and TRIM6. We show that TRIM5 and TRIM22 have a dynamic history of gene expansion and loss during the evolution of mammals. The cow genome contains an expanded cluster of TRIM5 genes and no TRIM22 gene, while the dog genome encodes TRIM22 but has lost TRIM5. In contrast, TRIM6 and TRIM34 have been strictly preserved as single gene orthologs in human, dog, and cow. A more focused analysis of primates reveals that, while TRIM6 and TRIM34 have evolved under purifying selection, TRIM22 has evolved under positive selection as was previously observed for TRIM5. Based on TRIM22 sequences obtained from 27 primate genomes, we find that the positive selection of TRIM22 has occurred episodically for approximately 23 million years, perhaps reflecting the changing pathogenic landscape. However, we find that the evolutionary episodes of positive selection that have acted on TRIM5 and TRIM22 are mutually exclusive, with generally only one of these genes being positively selected in any given primate lineage. We interpret this to mean that the positive selection of one gene has constrained the adaptive flexibility of its neighbor, probably due to genetic linkage. Finally, we find a striking congruence in the positions of amino acid residues found to be under positive selection in both TRIM5α and TRIM22, which in both proteins fall predominantly in the β2-β3 surface loop of the B30.2 domain. Astonishingly, this same loop is under positive selection in the multiple cow TRIM5 genes as well, indicating that this small structural loop may be a viral recognition motif spanning a hundred million years of mammalian evolution

    Positive Selection and Increased Antiviral Activity Associated with the PARP-Containing Isoform of Human Zinc-Finger Antiviral Protein

    Get PDF
    Intrinsic immunity relies on specific recognition of viral epitopes to mount a cell-autonomous defense against viral infections. Viral recognition determinants in intrinsic immunity genes are expected to evolve rapidly as host genes adapt to changing viruses, resulting in a signature of adaptive evolution. Zinc-finger antiviral protein (ZAP) from rats was discovered to be an intrinsic immunity gene that can restrict murine leukemia virus, and certain alphaviruses and filoviruses. Here, we used an approach combining molecular evolution and cellular infectivity assays to address whether ZAP also acts as a restriction factor in primates, and to pinpoint which protein domains may directly interact with the virus. We find that ZAP has evolved under positive selection throughout primate evolution. Recurrent positive selection is only found in the poly(ADP-ribose) polymerase (PARP)–like domain present in a longer human ZAP isoform. This PARP-like domain was not present in the previously identified and tested rat ZAP gene. Using infectivity assays, we found that the longer isoform of ZAP that contains the PARP-like domain is a stronger suppressor of murine leukemia virus expression and Semliki forest virus infection. Our study thus finds that human ZAP encodes a potent antiviral activity against alphaviruses. The striking congruence between our evolutionary predictions and cellular infectivity assays strongly validates such a combined approach to study intrinsic immunity genes

    An expanded clade of rodent Trim5 genes

    Get PDF
    AbstractTrim5α from primates (including humans), cows, and rabbits has been shown to be an active antiviral host gene that acts against a range of retroviruses. Although this suggests that Trim5α may be a common antiviral restriction factor among mammals, the status of Trim5 genes in rodents has been unclear. Using genomic and phylogenetic analyses, we describe an expanded paralogous cluster of at least eight Trim5-like genes in mice (including the previously described Trim12 and Trim30 genes), and three Trim5-like genes in rats. Our characterization of the rodent Trim5 locus, and comparison to the Trim5 locus in humans, cows, and rabbits, indicates that Trim5 has undergone independent evolutionary expansions within species. Evolutionary analysis shows that rodent Trim5 genes have evolved under positive selection, suggesting evolutionary conflicts consistent with important antiviral function. Sampling six rodent Trim5 genes failed to reveal antiviral activities against a set of eight retroviral challenges, although we predict that such activities exist

    The function and evolution of the restriction factor viperin in primates was not driven by lentiviruses

    Get PDF
    Abstract Background Viperin, also known as RSAD2, is an interferon-inducible protein that potently restricts a broad range of different viruses such as influenza, hepatitis C virus, human cytomegalovirus and West Nile virus. Viperin is thought to affect virus budding by modification of the lipid environment within the cell. Since HIV-1 and other retroviruses depend on lipid domains of the host cell for budding and infectivity, we investigated the possibility that Viperin also restricts human immunodeficiency virus and other retroviruses. Results Like other host restriction factors that have a broad antiviral range, we find that viperin has also been evolving under positive selection in primates. The pattern of positive selection is indicative of Viperin's escape from multiple viral antagonists over the course of primate evolution. Furthermore, we find that Viperin is interferon-induced in HIV primary target cells. We show that exogenous expression of Viperin restricts the LAI strain of HIV-1 at the stage of virus release from the cell. Nonetheless, the effect of Viperin restriction is highly strain-specific and does not affect most HIV-1 strains or other retroviruses tested. Moreover, knockdown of endogenous Viperin in a lymphocytic cell line did not significantly affect the spreading infection of HIV-1. Conclusion Despite positive selection having acted on Viperin throughout primate evolution, our findings indicate that Viperin is not a major restriction factor against HIV-1 and other retroviruses. Therefore, other viral lineages are likely responsible for the evolutionary signatures of positive selection in viperin among primates.</p

    RNA Stimulates Aurora B Kinase Activity during Mitosis

    Get PDF
    Accurate chromosome segregation is essential for cell viability. The mitotic spindle is crucial for chromosome segregation, but much remains unknown about factors that regulate spindle assembly. Recent work implicates RNA in promoting proper spindle assembly independently of mRNA translation; however, the mechanism by which RNA performs this function is currently unknown. Here, we show that RNA regulates both the localization and catalytic activity of the mitotic kinase, Aurora-B (AurB), which is present in a ribonucleoprotein (RNP) complex with many mRNAs. Interestingly, AurB kinase activity is reduced in Xenopus egg extracts treated with RNase, and its activity is stimulated in vitro by RNA binding. Spindle assembly defects following RNase-treatment are partially rescued by inhibiting MCAK, a microtubule depolymerase that is inactivated by AurB-dependent phosphorylation. These findings implicate AurB as an important RNA-dependent spindle assembly factor, and demonstrate a translation-independent role for RNA in stimulating AurB

    Pre-Settlement Vegetation at Casey\u27s Paha State Preserve, Iowa

    Get PDF
    Paha are loess-capped ridges standing 10-30 m above the surrounding plain of the Iowan Surface. Although Iowa was almost entirely covered with prairie and wetlands just prior to Euro-American settlement, the paha are believed to have been forested based on soil types and on early vegetation maps. The objective of this study was to find evidence that paha were forested by measuring the δ13C value of humin, the fraction of soil organic matter that is insoluble in acid and base. Previous work has shown that humin retains the δ13C signature of vegetation on a 1000-year time scale, as opposed to the more mobile and soluble humic and fulvic acids that reflect the δ13C signature of more recent vegetation. Soil samples were obtained from Casey\u27s Paha State Preserve in Tama County from four locations at depths ranging from 5-85 cm. Carbonates were removed with 1.0 M HCl and humic and fulvic acids were removed by repeated application of 0.5 M NaOH. The δ13C values of the humin fraction (-22.031% to -24.358%) were within or slightly above the upper range of δ13C values for woody vegetation (-23% to -34%) and well below the range for prairie grasses (-9% to -17%). Although it has been suggested that prairie fires bypassed the paha or that perched water tables maintained the forest, we suggest that the paha forests resulted from activity by Native Americans

    Evidence for Direct Involvement of the Capsid Protein in HIV Infection of Nondividing Cells

    Get PDF
    HIV and other lentiviruses can productively infect nondividing cells, whereas most other retroviruses, such as murine leukemia virus, require cell division for efficient infection. However, the determinants for this phenotype have been controversial. Here, we show that HIV-1 capsid (CA) is involved in facilitating HIV infection of nondividing cells because amino acid changes on CA severely disrupt the cell-cycle independence of HIV. One mutant in the N-terminal domain of CA in particular has lost the cell-cycle independence in all cells tested, including primary macrophages. The defect in this mutant appears to be at a stage past nuclear entry. We also find that the loss of cell-cycle independence can be cell-type specific, which suggests that a cellular factor affects the ability of HIV to infect nondividing cells. Our data suggest that CA is directly involved at some step in the viral life cycle that is important for infection of nondividing cells
    corecore