353 research outputs found
Parallel Balanced Allocations: The Heavily Loaded Case
We study parallel algorithms for the classical balls-into-bins problem, in
which balls acting in parallel as separate agents are placed into bins.
Algorithms operate in synchronous rounds, in each of which balls and bins
exchange messages once. The goal is to minimize the maximal load over all bins
using a small number of rounds and few messages.
While the case of balls has been extensively studied, little is known
about the heavily loaded case. In this work, we consider parallel algorithms
for this somewhat neglected regime of . The naive solution of
allocating each ball to a bin chosen uniformly and independently at random
results in maximal load (for ) w.h.p. In contrast, for the sequential setting Berenbrink et al (SIAM J.
Comput 2006) showed that letting each ball join the least loaded bin of two
randomly selected bins reduces the maximal load to w.h.p.
To date, no parallel variant of such a result is known.
We present a simple parallel threshold algorithm that obtains a maximal load
of w.h.p. within rounds. The algorithm
is symmetric (balls and bins all "look the same"), and balls send
messages in expectation per round. The additive term of in the
complexity is known to be tight for such algorithms (Lenzen and Wattenhofer
Distributed Computing 2016). We also prove that our analysis is tight, i.e.,
algorithms of the type we provide must run for rounds w.h.p.
Finally, we give a simple asymmetric algorithm (i.e., balls are aware of a
common labeling of the bins) that achieves a maximal load of in a
constant number of rounds w.h.p. Again, balls send only a single message per
round, and bins receive messages w.h.p
The Herodotus Paradox
The Babylonian bridal auction, described by Herodotus, is regarded as one of the earliest uses of an auction in history. Yet, to our knowledge, the literature lacks a formal equilibrium analysis of this auction. We provide such an analysis for the twoplayer case with complete and incompete information, and in so doing identify what we call the "Herodotus Paradox"
It takes two to tango: Equilibria in a model of sales
We show that the Varian model of sales with more than two firms has two types of equilibria: a unique symmetric equilibrium, and a continuum of asymmetric equilibria. In contrast, the 2-firm game has a unique equilibrium that is symmetric. For the n-firm case the asymmetric equilibria imply mixed strategies that can be ranked by first-order stochastic dominance. This enables one to rule out asymmetric equilibria on economic grounds by constructing a metagame in which both firms and consumers are players. The unique subgame perfect equilibrium of this metagame is symmetric
An oligopoly model of free banking: Theory and tests
The paper demonstrates that in an environment of free banking where some agents have imperfect information regarding the circulation and debasement rates of alternative money suppliers, the equilibrium supply of money involves mixed strategies. It follows that the circulation and debasement rates are intrinsically stochastic, but that their averages are below the rates set by a monopoly bank. Empirical tests reveal that these predictions are consistent with the free banking era of the United States. The paper is also relevant for the discussion about the future monetary union in the EC
The quantum world is not built up from correlations
It is known that the global state of a composite quantum system can be
completely determined by specifying correlations between measurements performed
on subsystems only. Despite the fact that the quantum correlations thus suffice
to reconstruct the quantum state, we show, using a Bell inequality argument,
that they cannot be regarded as objective local properties of the composite
system in question. It is well known since the work of J.S. Bell, that one
cannot have locally preexistent values for all physical quantities, whether
they are deterministic or stochastic. The Bell inequality argument we present
here shows this is also impossible for correlations among subsystems of an
individual isolated composite system. Neither of them can be used to build up a
world consisting of some local realistic structure. As a corrolary to the
result we argue that entanglement cannot be considered ontologically robust.
The argument has an important advantage over others because it does not need
perfect correlations but only statistical correlations. It can therefore easily
be tested in currently feasible experiments using four particle entanglement.Comment: Published version. Title change
Open access decision support for sustainable buildings and neighborhoods: The nano energy system simulator NESSI
The urgency of climate change mitigation, rising energy prices and geopolitical crises make a quick and efficient energy transition in the building sector imperative. Building owners, housing associations, and local governments need support in the complex task to build sustainable energy systems. Motivated by the calls for more solution-oriented, practice-focused research regarding climate change and guided by design science research principles, we address this need and design, develop, and evaluate the web-based decision support system NESSI. NESSI is an open-access energy system simulator with an intuitive user flow to facilitate multi-energy planning for buildings and neighborhoods. It calculates the technical, environmental, and economic effects of 14 energy-producing, consuming, and storing components of the electric and thermal infrastructure, considers time-dependent effects, and accounts for geographic as well as sectoral circumstances. Its applicability is demonstrated with the case of a single-family home in Hannover, Germany, and evaluated through twelve expert interviews
On Bernoulli Decompositions for Random Variables, Concentration Bounds, and Spectral Localization
As was noted already by A. N. Kolmogorov, any random variable has a Bernoulli
component. This observation provides a tool for the extension of results which
are known for Bernoulli random variables to arbitrary distributions. Two
applications are provided here: i. an anti-concentration bound for a class of
functions of independent random variables, where probabilistic bounds are
extracted from combinatorial results, and ii. a proof, based on the Bernoulli
case, of spectral localization for random Schroedinger operators with arbitrary
probability distributions for the single site coupling constants. For a general
random variable, the Bernoulli component may be defined so that its conditional
variance is uniformly positive. The natural maximization problem is an optimal
transport question which is also addressed here
Aspirin: A review of its neurobiological properties and therapeutic potential for mental illness
There is compelling evidence to support an aetiological role for inflammation, oxidative and nitrosative stress (O&NS), and mitochondrial dysfunction in the pathophysiology of major neuropsychiatric disorders, including depression, schizophrenia, bipolar disorder, and Alzheimer's disease (AD). These may represent new pathways for therapy. Aspirin is a non-steroidal anti-inflammatory drug that is an irreversible inhibitor of both cyclooxygenase (COX)-1 and COX-2, It stimulates endogenous production of anti-inflammatory regulatory 'braking signals', including lipoxins, which dampen the inflammatory response and reduce levels of inflammatory biomarkers, including C-reactive protein, tumor necrosis factor-α and interleukin (IL)--6, but not negative immunoregulatory cytokines, such as IL-4 and IL-10. Aspirin can reduce oxidative stress and protect against oxidative damage. Early evidence suggests there are beneficial effects of aspirin in preclinical and clinical studies in mood disorders and schizophrenia, and epidemiological data suggests that high-dose aspirin is associated with a reduced risk of AD. Aspirin, one of the oldest agents in medicine, is a potential new therapy for a range of neuropsychiatric disorders, and may provide proof-of-principle support for the role of inflammation and O&NS in the pathophysiology of this diverse group of disorders
Low-light-level nonlinear optics with slow light
Electromagnetically induced transparency in an optically thick, cold medium
creates a unique system where pulse-propagation velocities may be orders of
magnitude less than and optical nonlinearities become exceedingly large. As
a result, nonlinear processes may be efficient at low-light levels. Using an
atomic system with three, independent channels, we demonstrate a quantum
interference switch where a laser pulse with an energy density of
photons per causes a 1/e absorption of a second pulse.Comment: to be published in PR
SIMPATIQCO: A server-based software suite which facilitates monitoring the time course of LC-MS performance metrics on orbitrap instruments
While the performance of liquid chromatography (LC) and mass spectrometry (MS) instrumentation continues to increase, applications such as analyses of complete or near-complete proteomes and quantitative studies require constant and optimal system performance. For this reason, research laboratories and core facilities alike are recommended to implement quality control (QC) measures as part of their routine workflows. Many laboratories perform sporadic quality control checks. However, successive and systematic longitudinal monitoring of system performance would be facilitated by dedicated automatic or semiautomatic software solutions that aid an effortless analysis and display of QC metrics over time. We present the software package SIMPATIQCO (SIMPle AuTomatIc Quality COntrol) designed for evaluation of data from LTQ Orbitrap, Q-Exactive, LTQ FT, and LTQ instruments. A centralized SIMPATIQCO server can process QC data from multiple instruments. The software calculates QC metrics supervising every step of data acquisition from LC and electrospray to MS. For each QC metric the software learns the range indicating adequate system performance from the uploaded data using robust statistics. Results are stored in a database and can be displayed in a comfortable manner from any computer in the laboratory via a web browser. QC data can be monitored for individual LC runs as well as plotted over time. SIMPATIQCO thus assists the longitudinal monitoring of important QC metrics such as peptide elution times, peak widths, intensities, total ion current (TIC) as well as sensitivity, and overall LC-MS system performance; in this way the software also helps identify potential problems. The SIMPATIQCO software package is available free of charge
- …