10,192 research outputs found
Measuring Extinction Curves of Lensing Galaxies
We critique the method of constructing extinction curves of lensing galaxies
using multiply imaged QSOs. If one of the two QSO images is lightly reddened or
if the dust along both sightlines has the same properties then the method works
well and produces an extinction curve for the lensing galaxy. These cases are
likely rare and hard to confirm. However, if the dust along each sightline has
different properties then the resulting curve is no longer a measurement of
extinction. Instead, it is a measurement of the difference between two
extinction curves. This "lens difference curve'' does contain information about
the dust properties, but extracting a meaningful extinction curve is not
possible without additional, currently unknown information. As a quantitative
example, we show that the combination of two Cardelli, Clayton, & Mathis (CCM)
type extinction curves having different values of R(V) will produce a CCM
extinction curve with a value of R(V) which is dependent on the individual R(V)
values and the ratio of V band extinctions. The resulting lens difference curve
is not an average of the dust along the two sightlines. We find that lens
difference curves with any value of R(V), even negative values, can be produced
by a combination of two reddened sightlines with different CCM extinction
curves with R(V) values consistent with Milky Way dust (2.1 < R(V) < 5.6). This
may explain extreme values of R(V) inferred by this method in previous studies.
But lens difference curves with more normal values of R(V) are just as likely
to be composed of two dust extinction curves with R(V) values different than
that of the lens difference curve. While it is not possible to determine the
individual extinction curves making up a lens difference curve, there is
information about a galaxy's dust contained in the lens difference curves.Comment: 15 pages, 4 figues, ApJ in pres
IMMUNOLOGICAL MEMORY IN VITRO
The immune responses to sheep erythrocytes of mouse spleen cell suspensions from immune and nonimmune donors were compared in vitro. In vivo immunity was only transiently reflected in vitro, and 8 wk after in vivo immunization the responses of cultures from immunized and nonimmunized mice were virtually identical. There appeared to be two mechanisms for an antibody response to sheep erythrocytes. The first was responsible for the early primary response and is unmodified in the immune animal though contributing little to subsequent in vivo responses due to its suppressibility by specific antibody. The second was expressed in the in vivo secondary response but not on in vitro challenge of spleen cells from mice immunized many weeks previously; spleen cell cultures from such immune mice, freed from the antibody of the in vivo environment, once again demonstrate a pure primary-type response
A low cost scheme for high precision dual-wavelength laser metrology
A novel method capable of delivering relative optical path length metrology
with nanometer precision is demonstrated. Unlike conventional dual-wavelength
metrology which employs heterodyne detection, the method developed in this work
utilizes direct detection of interference fringes of two He-Ne lasers as well
as a less precise stepper motor open-loop position control system to perform
its measurement. Although the method may be applicable to a variety of
circumstances, the specific application where this metrology is essential is in
an astrometric optical long baseline stellar interferometer dedicated to
precise measurement of stellar positions. In our example application of this
metrology to a narrow-angle astrometric interferometer, measurement of
nanometer precision could be achieved without frequency-stabilized lasers
although the use of such lasers would extend the range of optical path length
the metrology can accurately measure. Implementation of the method requires
very little additional optics or electronics, thus minimizing cost and effort
of implementation. Furthermore, the optical path traversed by the metrology
lasers is identical with that of the starlight or science beams, even down to
using the same photodetectors, thereby minimizing the non-common-path between
metrology and science channels.Comment: 17 pages, 4 figures, accepted for publication in Applied Optic
On the estimation of scale of fluctuation in geostatistics
Describing how soil properties vary spatially is of particular importance in stochastic analyses of geotechnical problems, because spatial variability has a significant influence on local material and global geotechnical response. In particular, the scale of fluctuation θ is a key parameter in the correlation model used to represent the spatial variability of a site through a random field. It is, therefore, of fundamental importance to accurately estimate θ in order to best model the actual soil heterogeneity. In this paper, two methodologies are investigated to assess their abilities to estimate the vertical and horizontal scales of fluctuation of a particular site using in situ cone penetration test (CPT) data. The first method belongs to the family of more traditional approaches, which are based on best fitting a theoretical correlation model to available CPT data. The second method involves a new strategy which combines information from conditional random fields with the traditional approach. Both methods are applied to a case study involving the estimation of θ at three two-dimensional sections across a site and the results obtained show general agreement between the two methods, suggesting a similar level of accuracy between the new and traditional approaches. However, in order to further assess the relative accuracy of estimates provided by each method, a second numerical analysis is proposed. The results confirm the general consistency observed in the case study calculations, particularly in the vertical direction where a large amount of data are available. Interestingly, for the horizontal direction, where data are typically scarce, some additional improvement in terms of relative error is obtained with the new approach
The Elephant Trunk Nebula and the Trumpler 37 cluster: Contribution of triggered star formation to the total population of an HII region
Rich young stellar clusters produce HII regions whose expansion into the
nearby molecular cloud is thought to trigger the formation of new stars.
However, the importance of this mode of star formation is uncertain. This
investigation seeks to quantify triggered star formation (TSF) in IC 1396A
(a.k.a., the Elephant Trunk Nebula), a bright rimmed cloud (BRC) on the
periphery of the nearby giant HII region IC 1396 produced by the Trumpler 37
cluster. X-ray selection of young stars from Chandra X-ray Observatory data is
combined with existing optical and infrared surveys to give a more complete
census of the TSF population. Over 250 young stars in and around IC 1396A are
identified; this doubles the previously known population. A spatio-temporal
gradient of stars from the IC 1396A cloud toward the primary ionizing star HD
206267 is found. We argue that the TSF mechanism in IC 1396A is the
radiation-driven implosion process persisting over several million years.
Analysis of the X-ray luminosity and initial mass functions indicates that >140
stars down to 0.1 Msun were formed by TSF. Considering other BRCs in the IC
1396 HII region, we estimate the TSF contribution for the entire HII region
exceeds 14-25% today, and may be higher over the lifetime of the HII region.
Such triggering on the periphery of HII regions may be a significant mode of
star formation in the Galaxy.Comment: Accepted for publication in MNRAS; 28 pages, 18 figure
- …