5,693 research outputs found

    Visualisation of experimentally determined and predicted protein N-glycosylation and predicted glycosylphosphatidylinositol anchor addition in Trypanosoma brucei.

    Get PDF
    Background: Trypanosoma brucei is a protozoan parasite and the etiological agent of human and animal African trypanosomiasis. The organism cycles between its mammalian host and tsetse vector. The host-dwelling bloodstream form of the parasite is covered with a monolayer of variant surface glycoprotein (VSG) that enables it to escape both the innate and adaptive immune systems. Within this coat reside lower-abundance surface glycoproteins that function as receptors and/or nutrient transporters. The glycosylation of the Trypanosoma brucei surface proteome is essential to evade the immune response and is mediated by three oligosaccharyltransferase genes; two of which, TbSTT3A and TbSTT3B, are expressed in the bloodstream form of the parasite. Methods: We processed a recent dataset of our laboratory to visualise putative glycosylation sites of the Trypanosoma brucei proteome. We provided a visualisation for the predictions of glycosylation carried by TbSTT3A and TbSTT3B, and we augmented the visualisation with predictions for Glycosylphosphatidylinositol anchoring sites, domains and topology of the Trypanosoma brucei proteome. Conclusions: We created a web service to explore the glycosylation sites of the Trypanosoma brucei oligosaccharyltransferases substrates, using data described in a recent publication of our laboratory. We also made a machine learning algorithm available as a web service, described in our recent publication, to distinguish between TbSTT3A and TbSTT3B substrates

    Cost and Perceived Value in Obtaining a Bachelor’s Degree in Aviation Professional Flight: Will Collegiate Aviation Price Themselves Out of the Market with Technologically Advanced Aircraft?

    Get PDF
    Traditional academic baccalaureate degree programs have become increasingly expensive throughout the US. For collegiate aviation students, this news is even more daunting. Students obtaining a bachelor\u27s degree in aviation with a professional flight emphasis face unique challenges in today\u27s colleges and universities not typified by a majority of 4-year degree programs. Perhaps the most distinctive challenge lays in the financial arena of cost and return on investment for a bachelor\u27s degree in professional flight. This article will examine the various barriers associated with a typical bachelor\u27s degree aviation student majoring in professional flight

    Visualisation of proteome-wide ordered protein abundances in Trypanosoma brucei

    Get PDF
    Background: Trypanosoma brucei is a protozoan parasite and etiological agent of human and animal African trypanosomiasis. It has a complex life cycle, but the most studied cellular types are the in vitro cultivated bloodstream- and procyclic-forms. These correspond to the replicating, mammalian host bloodstream-dwelling, slender trypomastigotes and tsetse vector midgut-dwelling procyclic lifecycle stages, respectively. Several proteomics studies have reported the differential abundance of proteins between these in vitro cultivated cell types. However, there are no datasets providing protein abundance, from most to least abundant, within and between both cell types. Methods: We used MaxQuant software 1.6.10.4 to reprocess a recent large-scale proteomics experiment from our laboratory and extracted intensity-based quantifications of the bloodstream and procyclic form proteomes. Results: We created a web interface to visually explore protein abundances within and between the in vitro cultivated T. brucei bloodstream and procyclic form proteomes. Conclusions: The protein abundance visualization tool, searchable by protein name(s) and attribute(s), is likely to be useful to the trypanosome research community. It will allow users to contextualise their proteins of interest in terms of their abundances in the T. brucei bloodstream and procyclic form proteomes

    Common and unique features of glycosylation and glycosyltransferases in African trypanosomes

    Get PDF
    Eukaryotic protein glycosylation is mediated by glycosyl- and oligosaccharyl-transferases. Here, we describe how African trypanosomes exhibit both evolutionary conservation and significant divergence compared with other eukaryotes in how they synthesise their glycoproteins. The kinetoplastid parasites have conserved components of the dolichol-cycle and oligosaccharyltransferases (OSTs) of protein N-glycosylation, and of glycosylphosphatidylinositol (GPI) anchor biosynthesis and transfer to protein. However, some components are missing, and they process and decorate their N-glycans and GPI anchors in unique ways. To do so, they appear to have evolved a distinct and functionally flexible glycosyltransferases (GT) family, the GT67 family, from an ancestral eukaryotic ÎČ3GT gene. The expansion and/or loss of GT67 genes appears to be dependent on parasite biology. Some appear to correlate with the obligate passage of parasites through an insect vector, suggesting they were acquired through GT67 gene expansion to assist insect vector (tsetse fly) colonisation. Others appear to have been lost in species that subsequently adopted contaminative transmission. We also highlight the recent discovery of a novel and essential GT11 family of kinetoplastid parasite fucosyltransferases that are uniquely localised to the mitochondria of Trypanosoma brucei and Leishmania major. The origins of these kinetoplastid FUT1 genes, and additional putative mitochondrial GT genes, are discussed

    Proteomic identification of the UDP-GlcNAc:PI α1-6 GlcNAc-transferase subunits of the glycosylphosphatidylinositol biosynthetic pathway of <i>Trypanosoma brucei</i>

    Get PDF
    The first step of glycosylphosphatidylinositol (GPI) anchor biosynthesis in all eukaryotes is the addition of N-acetylglucosamine (GlcNAc) to phosphatidylinositol (PI) which is catalysed by a UDP-GlcNAc: PI α1-6 GlcNAc-transferase, also known as GPI GnT. This enzyme has been shown to be a complex of seven subunits in mammalian cells and a similar complex of six homologous subunits has been postulated in yeast. Homologs of these mammalian and yeast subunits were identified in the Trypanosoma brucei predicted protein database. The putative catalytic subunit of the T. brucei complex, TbGPI3, was epitope tagged with three consecutive c-Myc sequences at its C-terminus. Immunoprecipitation of TbGPI3-3Myc followed by native polyacrylamide gel electrophoresis and anti-Myc Western blot showed that it is present in a ~240 kDa complex. Label-free quantitative proteomics were performed to compare anti-Myc pull-downs from lysates of TbGPI-3Myc expressing and wild type cell lines. TbGPI3-3Myc was the most highly enriched protein in the TbGPI3-3Myc lysate pull-down and the expected partner proteins TbGPI15, TbGPI19, TbGPI2, TbGPI1 and TbERI1 were also identified with significant enrichment. Our proteomics data also suggest that an Arv1-like protein (TbArv1) is a subunit of the T. brucei complex. Yeast and mammalian Arv1 have been previously implicated in GPI biosynthesis, but here we present the first experimental evidence for physical association of Arv1 with GPI biosynthetic machinery. A putative E2-ligase has also been tentatively identified as part of the T. brucei UDP-GlcNAc: PI α1-6 GlcNAc-transferase complex

    The PAndAS view of the Andromeda satellite system - I. A Bayesian search for dwarf galaxies using spatial and color-magnitude information

    Full text link
    We present a generic algorithm to search for dwarf galaxies in photometric catalogs and apply it to the Pan-Andromeda Archaeological Survey (PAndAS). The algorithm is developed in a Bayesian framework and, contrary to most dwarf-galaxy-search codes, makes use of both the spatial and color-magnitude information of sources in a probabilistic approach. Accounting for the significant contamination from the Milky Way foreground and from the structured stellar halo of the Andromeda galaxy, we recover all known dwarf galaxies in the PAndAS footprint with high significance, even for the least luminous ones. Some Andromeda globular clusters are also recovered and, in one case, discovered. We publish a list of the 143 most significant detections yielded by the algorithm. The combined properties of the 39 most significant isolated detections show hints that at least some of these trace genuine dwarf galaxies, too faint to be individually detected. Follow-up observations by the community are mandatory to establish which are real members of the Andromeda satellite system. The search technique presented here will be used in an upcoming contribution to determine the PAndAS completeness limits for dwarf galaxies. Although here tuned to the search of dwarf galaxies in the PAndAS data, the algorithm can easily be adapted to the search for any localised overdensity whose properties can be modeled reliably in the parameter space of any catalog.Comment: 20 pages, 16 figures, 1 table; accepted for publication in ApJ. High res pdf available at https://www.dropbox.com/s/7zk7pme2wunwkjv/PAndAS_dwarf_galaxies.pd

    Age Constraints for an M31 Globular Cluster from Main Sequence Photometry

    Full text link
    We present a color-magnitude diagram (CMD) of the globular cluster SKHB-312 in the Andromeda galaxy (M31), obtained with the Advanced Camera for Surveys on the Hubble Space Telescope. The cluster was included in deep observations taken to measure the star formation history of the M31 halo. Overcoming a very crowded field, our photometry of SKHB-312 reaches V ~ 30.5 mag, more than 1 mag below the main sequence turnoff. These are the first observations to allow a direct age estimate from the turnoff in an old M31 cluster. We analyze its CMD and luminosity function using a finely-spaced grid of isochrones that have been calibrated using observations of Galactic clusters taken with the same camera and filters. The luminosity difference between the subgiant and horizontal branches is ~0.2 mag smaller in SKHB-312 than in the Galactic clusters 47 Tuc and NGC 5927, implying SKHB-312 is 2-3 Gyr younger. A quantitative comparison to isochrones yields an age of 10 +2.5/-1 Gyr

    RR Lyrae Stars in the Andromeda Halo from Deep Imaging with the Advanced Camera for Surveys

    Full text link
    We present a complete census of RR Lyrae stars in a halo field of the Andromeda galaxy. These deep observations, taken as part of a program to measure the star formation history in the halo, spanned a period of 41 days with sampling on a variety of time scales, enabling the identification of short and long period variables. Although the long period variables cannot be fully characterized within the time span of this program, the enormous advance in sensitivity provided by the Advanced Camera for Surveys on the Hubble Space Telescope allows accurate characterization of the RR Lyrae population in this field. We find 29 RRab stars with a mean period of 0.594 days, 25 RRc stars with a mean period of 0.316 days, and 1 RRd star with a fundamental period of 0.473 days and a first overtone period of 0.353 days. These 55 RR Lyrae stars imply a specific frequency S_RR=5.6, which is large given the high mean metallicity of the halo, but not surprising given that these stars arise from the old, metal-poor tail of the distribution. This old population in the Andromeda halo cannot be clearly placed into one of the Oosterhoff types: the ratio of RRc/RRabc stars is within the range seen in Oosterhoff II globular clusters, the mean RRab period is in the gap between Oosterhoff types, and the mean RRc period is in the range seen in Oosterhoff I globular clusters. The periods of these RR Lyraes suggest a mean metallicity of [Fe/H]=-1.6, while their brightness implies a distance modulus to Andromeda of 24.5+/-0.1, in good agreement with the Cepheid distance.Comment: 15 pages, latex. Accepted for publication in The Astronomical Journa

    Genetic variation in transferrin as a predictor for differentiation and evolution of caribou from eastern Canada

    Get PDF
    Polycrylamide gel electrophoresis was used to analyse tranferrrin variation in caribou populations from Manitoba, Ontario, Qu&eacute;bec/Labrador, and from Baffin Island, Northwest Territories in eastern Canada. The transferrin allele frequencies in these populations were compared with those previously reported for Canadian barren-ground caribou, Rangifer tarandus groenlandicus, Alaska caribou, R.t. grand, Peary caribou, R.t. pearyi, Svalbard reindeer, R.t. pla-tyrhynchus, and Eurasian tundra reindeer, R.t. tarandus. A total of twenty different alleles was detected in the analysed material, considerable genetic heterogeneity being detected among regions. Three alleles that were relatively common in caribou from Ontario, Manitoba and Qu&eacute;bec/Labrador, were not present in R.t. grand, R.t. pearyi, R.t. tarandus or R.t. platyrhynchus, and present only at very low frequencies 'm R.t. groenlandicus. These findings, together with genetic identity analyses, suggest that the caribou in Manitoba, Ontario, and Qu&eacute;bec/Labrador are mainly of the R.t. caribou type, and that little interbreeding has occurred with other subspecies. The large genetic distance in the transferrin locus between R.t. caribou and other subspecies of reindeer/caribou suggests that, during the Wisconsin glaciation the ancestral populations of R.t. caribou survived in a refugium different from that of the ancestral populations of the other subspecies. Significant genetic differences between Baffin Island caribou and all other populations were mainly due to the presence of one allele that was in high frequency in Baffin Island caribou, but that was absent, or present in very low frequencies, in all other reindeer/caribou populations. The genetic differences between Baffin Island caribou and the other subspecies were greater than the differences between several of the currently recognized subspecies
    • 

    corecore