9 research outputs found

    Potential effects of ionizing radiation on the evidentiary value of DNA, latent fingerprints, hair, and fibers: A comprehensive review and new results

    Get PDF
    An extensive literature review and new post-irradiation experimental results are presented of genotyping blood stains and hair, and physical examinations of latent fingerprints, hairs, and fibers. Results indicate that successful development of nuclear short tandem repeat (STR) and mitochondrial DNA sequence profiles from human blood and hair evidence is possible—up to a point—following exposure to gamma, neutron, beta, and alpha radiation at several levels that would most likely be present at this type of crime scene (i.e., a “dirty bomb,” etc.). Commencing at gamma radiation levels between 90 and 900 kGy, DNA analysis using conventional DNA techniques was unsuccessful. In general, irradiation negatively affected the quality of latent fingerprints. All four radiation types degraded most fingerprint samples at all doses; nevertheless, many fingerprints remained of value for potential use in comparison. Although variable from one hair to another, microscopic changes observed for all types and levels of irradiation could potentially result in false exclusions. Negligible microscopic changes were observed in papers and fibers (used as substrates for fingerprints and bloodstains) up to 90 kGy gamma, but fluorescence of fibers began to change above that dose. Paper and fibers, as well as plastic evidence enclosures, became extremely brittle leading to breakage after a gamma dose of 900 kGy

    Prevalence of hepatic iron overload and association with hepatocellular cancer in end-stage liver disease: results from the National Hemochromatosis Transplant Registry

    Full text link
    Background : It is unclear whether mild to moderate iron overload in liver diseases other than hereditary haemochromatosis (HH) contributes to hepatocellular carcinoma. This study examined the association between hepatic iron grade and hepatocellular carcinoma in patients with end-stage liver disease of diverse aetiologies. Methods : The prevalence of hepatic iron overload and hepatocellular carcinoma was examined in 5224 patients undergoing liver transplantation. Explant pathology reports were reviewed for the underlying pathological diagnosis, presence of hepatocellular carcinoma and degree of iron staining. The distribution of categorical variables was studied using Χ 2 tests. Results : Both iron overload and hepatocellular carcinoma were the least common with biliary cirrhosis (1.8 and 2.8% respectively). Hepatocellular carcinoma was the most common in patients with hepatitis B (16.7%), followed by those with hepatitis C (15.1%) and HH (14.9%). In the overall cohort, any iron overload was significantly associated with hepatocellular carcinoma ( P =0.001), even after adjustment for the underlying aetiology of liver disease. The association between hepatic iron content and hepatocellular carcinoma was the strongest in patients with biliary cirrhosis ( P <0.001) and hepatitis C ( P <0.001). Conclusions : Iron overload is associated with hepatocellular carcinoma in patients with end-stage liver disease, suggesting a possible carcinogenic or cocarcinogenic role for iron in chronic liver disease.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75573/1/j.1478-3231.2007.01596.x.pd

    Fragmented Nuclear DNA Is the Predominant Genetic Material in Human Hair Shafts

    No full text
    While shed hairs are one of the most commonly encountered evidence types, they are among the most limited in terms of DNA quantity and quality. As a result, nuclear DNA short tandem repeat (STR) profiling is generally unsuccessful and DNA testing of shed hair is instead performed by targeting the mitochondrial DNA control region. Although the high copy number of mitochondrial DNA relative to nuclear DNA routinely permits the recovery of mitochondrial DNA (mtDNA) data in these cases, mtDNA profiles do not offer the discriminatory power of nuclear DNA profiles. In order to better understand the total content and degradation state of DNA in single shed hairs and assess the feasibility of recovering highly discriminatory nuclear DNA data from this common evidence type, high throughput shotgun sequencing was performed on both recently collected and aged (approximately 50-year-old) hair samples. The data reflect trends that have been demonstrated previously with other technologies, namely that mtDNA quantity and quality decrease along the length of the hair shaft. In addition, the shotgun data reveal that nuclear DNA is present in shed hair and surprisingly abundant relative to mitochondrial DNA, even in the most distal fragments. Nuclear DNA comprised, at minimum, 88% of the total human reads in any given sample, and generally more than 95%. Here, we characterize both the nuclear and mitochondrial DNA content of shed hairs and discuss the implications of these data for forensic investigations

    Improved DNA Extraction and Illumina Sequencing of DNA Recovered from Aged Rootless Hair Shafts Found in Relics Associated with the Romanov Family.

    No full text
    This study describes an optimized DNA extraction protocol targeting ultrashort DNA molecules from single rootless hairs. It was applied to the oldest samples available to us: locks of hairs that were found in relics associated with the Romanov family. Published mitochondrial DNA genome sequences of Tsar Nicholas II and his wife, Tsarina Alexandra, made these samples ideal to assess this DNA extraction protocol and evaluate the types of genetic information that can be recovered by sequencing ultrashort fragments. Using this method, the mtGenome of the Tsarina's lineage was identified in hairs that were concealed in a pendant made by Karl Fabergé for Alexandra Feodorovna Romanov. In addition, to determine if the lock originated from more than one individual, two hairs from the locket were extracted independently and converted into Illumina libraries for shotgun sequencing on a NextSeq 500 platform. From these data, autosomal SNPs were analyzed to assess relatedness. The results indicated that the two hairs came from a single individual. Genetic testing of hairs that were found in the second artifact, a framed photograph of Louise of Hesse-Kassel, Queen of Denmark and maternal grandmother of Tsar Nicholas II, revealed that the hair belonged to a woman who shared Tsar Nicholas' maternal lineage, including the well-known point heteroplasmy at position 16169

    Potential effects of ionizing radiation on the evidentiary value of DNA, latent fingerprints, hair, and fibers: A comprehensive review and new results

    Get PDF
    An extensive literature review and new post-irradiation experimental results are presented of genotyping blood stains and hair, and physical examinations of latent fingerprints, hairs, and fibers. Results indicate that successful development of nuclear short tandem repeat (STR) and mitochondrial DNA sequence profiles from human blood and hair evidence is possible—up to a point—following exposure to gamma, neutron, beta, and alpha radiation at several levels that would most likely be present at this type of crime scene (i.e., a “dirty bomb,” etc.). Commencing at gamma radiation levels between 90 and 900 kGy, DNA analysis using conventional DNA techniques was unsuccessful. In general, irradiation negatively affected the quality of latent fingerprints. All four radiation types degraded most fingerprint samples at all doses; nevertheless, many fingerprints remained of value for potential use in comparison. Although variable from one hair to another, microscopic changes observed for all types and levels of irradiation could potentially result in false exclusions. Negligible microscopic changes were observed in papers and fibers (used as substrates for fingerprints and bloodstains) up to 90 kGy gamma, but fluorescence of fibers began to change above that dose. Paper and fibers, as well as plastic evidence enclosures, became extremely brittle leading to breakage after a gamma dose of 900 kGy
    corecore