40 research outputs found

    USP4 is regulated by Akt phosphorylation and deubiquitylates TGF-beta type I receptor

    Get PDF
    Stability and membrane localization of Transforming growth factor-β (TGF-β) type I receptor (TβRI) is essential for controlling TGF-β signaling. TβRI is targeted for ubiquitination-mediated degradation by Smad7/Smurf2 complex. However, it is unclear whether polyubiquitin modified TβRI can be reversed. Here we performed a genome-wide gain of function screen and identified ubiquitin-specific protease (USP) 4 as a strong inducer of TGF-β signaling. Putative oncogenic USP4 was found to interact with TβRI as deubiquitinating enzyme thus maintains TβR1 levels at the plasma membrane. Depletion of USP4 mitigates TGF-β-induced breast cancer cell migration, epithelial to mesenchymal transition and metastasis. Importantly, Akt/Protein kinase B (PKB), which has been associated with poor prognosis in breast cancer, associates with and phosphorylates USP4. Akt mediated phosphorylation relocates USP4 to cytoplasm and membrane and is required for maintaining its protein stability. Moreover, Akt-induced breast cancer cell migration was inhibited by USP4 depletion and TβRI kinase inhibition. Our results identified USP4 as an important determinant for crosstalk between TGF-β and Akt, which provides new opportunities for cancer treatment

    Impaired Design Fluency Is a Marker of Pathological Cognitive Aging; Results from the Korean Longitudinal Study on Health and Aging

    Get PDF
    ObjectiveaaWe investigated neuropsychological markers that can be used to discriminate pathological cognitive aging from normal cognitive aging. MethodsaaWe administered frontal lobe function tests including the Wisconsin Card Sorting Test (WCST), digit span test, lexical fluency test, fixed condition design fluency test, and Trail Making Test B (TMT-B) to 92 individuals with pathological cognitive aging (PCA) and 222 individuals with normal cognitive aging (NCA). We examined the main effects of participants ’ diagnoses (PCA, NCA) and age (65-69 years old, 70-74 years old and 75 years old or over) on their test performance using multivariate analysis of variance. ResultsaaThe main effects of both the diagnosis (F=2.860, p=0.002) and the age group (F=2.484, p<0.001) were significant. The PCA group showed lower performance on the backward digit span test (F=14.306, p<0.001), fixed condition design fluency test (F=8.347, p=0.004) and also exhibited perseverative errors in the WCST (F=4.19, p=0.042) compared with the NCA group. The main effect of the diagnosis on the backward digit span test and the fixed condition design fluency test remained significant after Bonferroni correction

    Identification of Novel Genes and Pathways Regulating SREBP Transcriptional Activity

    Get PDF
    BACKGROUND: Lipid metabolism in mammals is orchestrated by a family of transcription factors called sterol regulatory element-binding proteins (SREBPs) that control the expression of genes required for the uptake and synthesis of cholesterol, fatty acids, and triglycerides. SREBPs are thus essential for insulin-induced lipogenesis and for cellular membrane homeostasis and biogenesis. Although multiple players have been identified that control the expression and activation of SREBPs, gaps remain in our understanding of how SREBPs are coordinated with other physiological pathways. METHODOLOGY: To identify novel regulators of SREBPs, we performed a genome-wide cDNA over-expression screen to identify proteins that might modulate the transcription of a luciferase gene driven from an SREBP-specific promoter. The results were verified through secondary biological assays and expression data were analyzed by a novel application of the Gene Set Enrichment Analysis (GSEA) method. CONCLUSIONS/SIGNIFICANCE: We screened 10,000 different cDNAs and identified a number of genes and pathways that have previously not been implicated in SREBP control and cellular cholesterol homeostasis. These findings further our understanding of lipid biology and should lead to new insights into lipid associated disorders

    Activation of Yap Directed Transcription by Knock-down of Conserved Cellular Functions

    No full text
    The Yap-Hippo pathway has a significant role in regulating cell proliferation and growth, thus controlling organ size and regeneration. The Hippo pathway regulates two highly conserved, transcription co-activators YAP and TAZ. The upstream regulators of the Yap-Hippo pathway have not been fully characterized. The aim of this study was to use a siRNA screen, in a liver biliary cell line, to identify regulators of the Yap-Hippo pathway that allow activation of the YAP transcription co-activator at high cell density. Activation of the Yap transcription co-activator was monitored using a high content, image based assay that measured the intracellular localization of native YAP protein. Active siRNAs were identified and further validated by quantification of CYR61 mRNA levels (a known Yap target gene). The effect of compounds targeting the putative gene targets identified as hits was also used for further validation. A number of validated hits reveal basic aspects of Yap-Hippo biology; such as components of the nuclear pore, by which YAP cytoplasmic/nuclear shuttling occurs, or how proteasomal degradation regulates intracellular YAP concentrations, which then alter YAP localization and transcription. Such results highlight how targeting conserved cellular functions can lead to validated activity in phenotypic assays

    USP4 is regulated by AKT phosphorylation and directly deubiquitylates TGFbeta type I receptor

    No full text
    The stability and membrane localization of the transforming growth factor-beta (TGF-beta) type I receptor (TbetaRI) determines the levels of TGF-beta signalling. TbetaRI is targeted for ubiquitylation-mediated degradation by the SMAD7SMURF2 complex. Here we performed a genome-wide gain-of-function screen and identied ubiquitin-specic protease (USP) 4 as a strong inducer of TGF-beta signalling. USP4 was found to directly interact with TRI and act as a deubiquitylating enzyme, thereby controlling TbetaRI levels at the plasma membrane. Depletion of USP4 mitigates TGF-beta-induced epithelial to mesenchymal transition and metastasis. Importantly, AKT (also known as protein kinase B), which has been associated with poor prognosis in breast cancer, directly associates with and phosphorylates USP4. AKT-mediated phosphorylation relocates nuclear USP4 to the cytoplasm and membrane and is required for maintaining its protein stability. Moreover, AKT-induced breast cancer cell migration was inhibited by USP4 depletion and TRI kinase inhibition. Our results uncover USP4 as an important determinant for crosstalk between TGF-beta and AKT signalling pathways

    Expression and Characterization of a 5-oxo-6 E

    No full text

    The SIAH E3 ubiquitin ligases promote Wnt/β-catenin signaling through mediating Wnt-induced Axin degradation

    No full text
    The Wnt/β-catenin signaling pathway plays essential roles in embryonic development and adult tissue homeostasis. Axin is a concentration-limiting factor responsible for the formation of the β-catenin destruction complex. Wnt signaling itself promotes the degradation of Axin. However, the underlying molecular mechanism and biological relevance of this targeting of Axin have not been elucidated. Here, we identify SIAH1/2 (SIAH) as the E3 ligase mediating Wnt-induced Axin degradation. SIAH proteins promote the ubiquitination and proteasomal degradation of Axin through interacting with a VxP motif in the GSK3-binding domain of Axin, and this function of SIAH is counteracted by GSK3 binding to Axin. Structural analysis reveals that the Axin segment responsible for SIAH binding is also involved in GSK3 binding but adopts distinct conformations in Axin/SIAH and Axin/GSK3 complexes. Knockout of SIAH1 blocks Wnt-induced Axin ubiquitination and attenuates Wnt-induced β-catenin stabilization. Our data suggest that Wnt-induced dissociation of the Axin/GSK3 complex allows SIAH to interact with Axin not associated with GSK3 and promote its degradation and that SIAH-mediated Axin degradation represents an important feed-forward mechanism to achieve sustained Wnt/β-catenin signaling

    Activation of Yap Directed Transcription by Knock-down of Conserved Cellular Functions

    No full text
    The Yap-Hippo pathway has been shown to have a significant role in regulating cell proliferation and growth and hence controlling organ size and regeneration, as well as the differentiation of stem cells. These cell fate decisions are regulated by the Hippo pathway through the action of two, highly conserved, transcription co-activators YAP and TAZ. However, the upstream regulators of the Yap-Hippo pathway have not been fully characterized and may vary in different cell types and organs. The aim of this study was to use a siRNA screen, in a liver biliary cell line, to identify regulators of the Yap-Hippo pathway that when knocked-down allow activation of the YAP transcription co-activator at high cell density. This project used a commercially available library of siRNAs purchased from Qiagen that consisted of four siRNAs targeting seven thousand genes of the “druggable” genome. The library was screened using a reverse transfection protocol with a biliary derived cell line which was grown to high cell density. Activation of the Yap transcription co-activator was monitored using a high content, image based assay that measured the intracellular localization of native YAP protein. Active siRNAs were identified and further validated by quantification of CYR61 mRNA levels (a known Yap target gene) following knock-down and the effect of compounds targeting the putative gene targets identified as hits was also used for further validation. A number of validated hits reveal basic aspects of Yap-Hippo biology; such as components of the nuclear pore, by which YAP cytoplasmic/nuclear shuttling occurs, or how proteasomal degradation regulates intracellular YAP concentrations, which then alter YAP localization and transcription. Such results highlight how targeting conserved cellular functions can lead to validated activity in phenotypic assays
    corecore