81 research outputs found
Searching for galactic axions through magnetized media: QUAX status report
The current status of the QUAX R\&D program is presented. QUAX is a
feasibility study for a detection of axion as dark matter based on the coupling
to the electrons. The relevant signal is a magnetization change of a magnetic
material placed inside a resonant microwave cavity and polarized with a static
magnetic field.Comment: Contributed to the 13th Patras Workshop on Axions, WIMPs and WISPs,
Thessaloniki, May 15 to 19, 201
Initial operation of the International Gravitational Event Collaboration
The International Gravitational Event Collaboration, IGEC, is a coordinated
effort by research groups operating gravitational wave detectors working
towards the detection of millisecond bursts of gravitational waves. Here we
report on the current IGEC resonant bar observatory, its data analysis
procedures, the main properties of the first exchanged data set. Even though
the available data set is not complete, in the years 1997 and 1998 up to four
detectors were operating simultaneously. Preliminary results are mentioned.Comment: 8 pages, 2 figures, 3 tables; Proceeding of the GWDAW'99. Submitted
to the International Journal of Modern Physic
Galactic axions search with a superconducting resonant cavity
To account for the dark matter content in our Universe, post-inflationary
scenarios predict for the QCD axion a mass in the range
(10-10^3)\,\mu\mbox{eV}. Searches with haloscope experiments in this mass
range require the monitoring of resonant cavity modes with frequency above
5\,GHz, where several experimental limitations occur due to linear amplifiers,
small volumes, and low quality factors of Cu resonant cavities. In this paper
we deal with the last issue, presenting the result of a search for galactic
axions using a haloscope based on a 36\,\mbox{cm}^3 NbTi superconducting
cavity. The cavity worked at T=4\,\mbox{K} in a 2\,T magnetic field and
exhibited a quality factor for the TM010 mode at 9\,GHz.
With such values of the axion signal is significantly increased with
respect to copper cavity haloscopes. Operating this setup we set the limit
g_{a\gamma\gamma}<1.03\times10^{-12}\,\mbox{GeV}^{-1} on the axion photon
coupling for a mass of about 37\,eV. A comprehensive study of the NbTi
cavity at different magnetic fields, temperatures, and frequencies is also
presented
IGEC2: A 17-month search for gravitational wave bursts in 2005-2007
We present here the results of a 515 days long run of the IGEC2 observatory,
consisting of the four resonant mass detectors ALLEGRO, AURIGA, EXPLORER and
NAUTILUS. The reported results are related to the fourfold observation time
from Nov. 6 2005 until Apr. 14 2007, when Allegro ceased its operation. This
period overlapped with the first long term observations performed by the LIGO
interferometric detectors. The IGEC observations aim at the identification of
gravitational wave candidates with high confidence, keeping the false alarm
rate at the level of 1 per century, and high duty cycle, namely 57% with all
four sites and 94% with at least three sites in simultaneous observation. The
network data analysis is based on time coincidence searches over at least three
detectors: the four 3-fold searches and the 4-fold one are combined in a
logical OR. We exchanged data with the usual blind procedure, by applying a
unique confidential time offset to the events in each set of data. The
accidental background was investigated by performing sets of 10^8 coincidence
analyses per each detector configuration on off-source data, obtained by
shifting the time series of each detector. The thresholds of the five searches
were tuned so as to control the overall false alarm rate to 1/century. When the
confidential time shifts was disclosed, no gravitational wave candidate was
found in the on-source data. As an additional output of this search, we make
available to other observatories the list of triple coincidence found below
search thresholds, corresponding to a false alarm rate of 1/month.Comment: 10 pages, 8 figures Accepted for publication on Phys. Rev.
Results of the IGEC-2 search for gravitational wave bursts during 2005
The network of resonant bar detectors of gravitational waves resumed
coordinated observations within the International Gravitational Event
Collaboration (IGEC-2). Four detectors are taking part in this collaboration:
ALLEGRO, AURIGA, EXPLORER and NAUTILUS. We present here the results of the
search for gravitational wave bursts over 6 months during 2005, when IGEC-2 was
the only gravitational wave observatory in operation. The network data analysis
implemented is based on a time coincidence search among AURIGA, EXPLORER and
NAUTILUS, keeping the data from ALLEGRO for follow-up studies. With respect to
the previous IGEC 1997-2000 observations, the amplitude sensitivity of the
detectors to bursts improved by a factor about 3 and the sensitivity bandwidths
are wider, so that the data analysis was tuned considering a larger class of
detectable waveforms. Thanks to the higher duty cycles of the single detectors,
we decided to focus the analysis on three-fold observation, so to ensure the
identification of any single candidate of gravitational waves (gw) with high
statistical confidence. The achieved false detection rate is as low as 1 per
century. No candidates were found.Comment: 10 pages, to be submitted to Phys. Rev.
A Joint Search for Gravitational Wave Bursts with AURIGA and LIGO
The first simultaneous operation of the AURIGA detector and the LIGO
observatory was an opportunity to explore real data, joint analysis methods
between two very different types of gravitational wave detectors: resonant bars
and interferometers. This paper describes a coincident gravitational wave burst
search, where data from the LIGO interferometers are cross-correlated at the
time of AURIGA candidate events to identify coherent transients. The analysis
pipeline is tuned with two thresholds, on the signal-to-noise ratio of AURIGA
candidate events and on the significance of the cross-correlation test in LIGO.
The false alarm rate is estimated by introducing time shifts between data sets
and the network detection efficiency is measured with simulated signals with
power in the narrower AURIGA band. In the absence of a detection, we discuss
how to set an upper limit on the rate of gravitational waves and to interpret
it according to different source models. Due to the short amount of analyzed
data and to the high rate of non-Gaussian transients in the detectors noise at
the time, the relevance of this study is methodological: this was the first
joint search for gravitational wave bursts among detectors with such different
spectral sensitivity and the first opportunity for the resonant and
interferometric communities to unify languages and techniques in the pursuit of
their common goal.Comment: 18 pages, IOP, 12 EPS figure
A Cross-correlation method to search for gravitational wave bursts with AURIGA and Virgo
We present a method to search for transient GWs using a network of detectors
with different spectral and directional sensitivities: the interferometer Virgo
and the bar detector AURIGA. The data analysis method is based on the
measurements of the correlated energy in the network by means of a weighted
cross-correlation. To limit the computational load, this coherent analysis step
is performed around time-frequency coincident triggers selected by an excess
power event trigger generator tuned at low thresholds. The final selection of
GW candidates is performed by a combined cut on the correlated energy and on
the significance as measured by the event trigger generator. The method has
been tested on one day of data of AURIGA and Virgo during September 2005. The
outcomes are compared to the results of a stand-alone time-frequency
coincidence search. We discuss the advantages and the limits of this approach,
in view of a possible future joint search between AURIGA and one
interferometric detector.Comment: 11 pages, 6 figures, submitted to CQG special issue for Amaldi 7
Proceeding
Experimental Characterization of RF-SQUIDs Based Josephson Traveling Wave Parametric Amplifier Exploiting Resonant Phase Matching Scheme
This study presents recent advancements in Josephson Traveling Wave Parametric Amplifiers (JTWPAs) developed and tested at Istituto Nazionale di Ricerca Metrologica within the Detector Array Readout with Traveling Wave AmplifieRS project framework. Combining Josephson junctions with superconducting coplanar waveguides, JTWPAs offer advanced capabilities for quantum-limited broadband microwave amplification and the emission of non-classical microwave radiation. The work delves into the architecture, optimization, and experimental characterization of a JTWPA with a Resonant Phase-Matching mechanism, highlighting signal gains and idler conversion factors in relation to pump power and signal frequency
Progress in the development of a KITWPA for the DARTWARS project
DARTWARS (Detector Array Readout with Traveling Wave AmplifieRS) is a three
years project that aims to develop high-performing innovative Traveling Wave
Parametric Amplifiers (TWPAs) for low temperature detectors and qubit readout
(C-band). The practical development follows two different promising approaches,
one based on the Josephson junctions (TWJPA) and the other one based on the
kinetic inductance of a high-resistivity superconductor (KITWPA). This paper
presents the advancements made by the DARTWARS collaboration to produce a first
working prototype of a KITWPA.Comment: 3 pages, 4 figures. Proceeding of Pisa15th Meeting conferenc
Nonlinear Behavior of Josephson Traveling Wave Parametric Amplifiers
Recent advancements in quantum technologies and advanced detection experiments have underscored the pressing need for the detection of exceedingly weak signals within the microwave frequency spectrum. Addressing this challenge, the Josephson Traveling Wave Parametric Amplifier (JTWPA) has been proposed as a cryogenic front-end amplifier capable of approaching the quantum noise limit while providing a relevant bandwidth. This research is centered on a comprehensive numerical investigation of the JTWPA, without resorting to simplifications regarding the nonlinearity of the essential components. Specifically, this study focuses on a thorough examination of the system, characterized by coupled nonlinear differential equations representing all components of the device. Proper input and output signals at the device's boundaries are considered. The analysis of the output signals undergoing the parametric amplification process involves a detailed exploration of phase-space dynamics and Fourier spectral analysis of the output voltage. This study is conducted while considering the parameters ruling the response of the device under pump and signal excitations. In addition to the expected signal amplification, the findings reveal that the nonlinear nature of the system can give rise to unforeseen phenomena, depending on the system's operational conditions, which include: the generation of pump tone harmonics, modulation of the signal gain, and incommensurate frequency generation effects that are not easily accommodated by simplistic linearized approaches
- âŠ