530 research outputs found

    Damping of Bogoliubov Excitations in Optical Lattices

    Full text link
    Extending recent work to finite temperatures, we calculate the Landau damping of a Bogoliubov excitation in an optical lattice, due to coupling to a thermal cloud of such excitations. For simplicity, we consider a 1D Bose-Hubbard model and restrict ourselves to the first energy band. For energy conservation to be satisfied, the excitations in the collision processes must exhibit ``anomalous dispersion'', analogous to phonons in superfluid 4He^4\rm{He}. This leads to the disappearance of all damping processes when Unc06tU n^{\rm c 0}\ge 6t, where UU is the on-site interaction, tt is the hopping matrix element and nc0(T)n^{\rm c 0}(T) is the number of condensate atoms at a lattice site. This phenomenon also occurs in 2D and 3D optical lattices. The disappearance of Beliaev damping above a threshold wavevector is noted.Comment: 4pages, 5figures, submitted to Phys. Rev. Let

    Interrelations Between the Neutron's Magnetic Interactions and the Magnetic Aharonov-Bohm Effect

    Get PDF
    It is proved that the phase shift of a polarized neutron interacting with a spatially uniform time-dependent magnetic field, demonstrates the same physical principles as the magnetic Aharonov-Bohm effect. The crucial role of inert objects is explained, thereby proving the quantum mechanical nature of the effect. It is also proved that the nonsimply connectedness of the field-free region is not a profound property of the system and that it cannot be regarded as a sufficient condition for a nonzero phase shift.Comment: 18 pages, 1 postscript figure, Late

    Shape functions of dipolar ferromagnets at the Curie point

    Get PDF
    We present a complete mode coupling theory for the critical dynamics of ferromagnets above the Curie point with both short range exchange and long range dipolar interaction. This theory allows us to determine the full Kubo relaxation functions at the critical point. In particular, we are able to explain recent spin echo measurements

    Theory of the Fano Resonance in the STM Tunneling Density of States due to a Single Kondo Impurity

    Full text link
    The conduction electron density of states nearby single magnetic impurities, as measured recently by scanning tunneling microscopy (STM), is calculated, taking into account tunneling into conduction electron states only. The Kondo effect induces a narrow Fano resonance in the conduction electron density of states, while scattering off the d-level generates a weakly energy dependent Friedel oscillation. The line shape varies with the distance between STM tip and impurity, in qualitative agreement with experiments, but is very sensitive to details of the band structure. For a Co impurity the experimentally observed width and shift of the Kondo resonance are in accordance with those obtained from a combination of band structure and strongly correlated calculations.Comment: 4 pages, ReVTeX + 4 figures (Encapsulated Postscript), submitted to PR

    Dissociative recombination and rotational transitions of D2+_2^+ in collisions with slow electrons

    Get PDF
    Rate coefficients for dissociative recombination and state-to-state rotational transitions of the D2+_{2}^{+} ion induced by collisions with very low-energy electrons have been reported following our previous studies on HD+^{+} and H2+_{2}^{+} [9,10]. The same molecular structure data sets, excitations (Ni+N_{i}^{+} \rightarrow Nf+=Ni++2N_{f}^{+}=N_{i}^{+}+2 for Ni+=0N_{i}^{+}=0 to 1010) and de-excitations (Ni+N_{i}^{+} \rightarrow Nf+=Ni+2N_{f}^{+}=N_{i}^{+}-2, for Ni+=2N_{i}^{+}=2 to 1010) were used for collision energies ranging from 0.010.01 meV to 0.30.3 eV. Isotopic effects for dissociative recombination and rotational transitions of the vibrationally relaxed targets are presented.Comment: 7 pages, 7 figures, 4 table

    Magnetic Fluctuations and Correlations in MnSi - Evidence for a Skyrmion Spin Liquid Phase

    Full text link
    We present a comprehensive analysis of high resolution neutron scattering data involving Neutron Spin Echo spectroscopy and Spherical Polarimetry which confirm the first order nature of the helical transition and reveal the existence of a new spin liquid skyrmion phase. Similar to the blue phases of liquid crystals this phase appears in a very narrow temperature range between the low temperature helical and the high temperature paramagnetic phases.Comment: 11 pages, 16 figure
    corecore