9,240 research outputs found
Protein retention in yeast rough endoplasmic reticulum: expression and assembly of human ribophorin I.
The RER retains a specific subset of ER proteins, many of which have been shown to participate in the translocation of nascent secretory and membrane proteins. The mechanism of retention of RER specific membrane proteins is unknown. To study this phenomenon in yeast, where no RER-specific membrane proteins have yet been identified, we expressed the human RER-specific protein, ribophorin I. In all mammalian cell types examined, ribophorin I has been shown to be restricted to the membrane of the RER. Here we ascertain that yeast cells correctly target, assemble, and retain ribophorin I in their RER. Floatation experiments demonstrated that human ribophorin I, expressed in yeast, was membrane associated. Carbonate (pH = 11) washing and Triton X-114 cloud-point precipitations of yeast microsomes indicated that ribophorin I was integrated into the membrane bilayer. Both chromatography on Con A and digestion with endoglycosidase H were used to prove that ribophorin I was glycosylated once, consistent with its expression in mammalian cells. Proteolysis of microsomal membranes and subsequent immunoblotting showed ribophorin I to have assumed the correct transmembrane topology. Sucrose gradient centrifugation studies found ribophorin I to be included only in fractions containing rough membranes and excluded from smooth ones that, on the basis of the distribution of BiP, included smooth ER. Ribosome removal from rough membranes and subsequent isopycnic centrifugation resulted in a shift in the buoyant density of the ribophorin I-containing membranes. Furthermore, the rough and density-shifted fractions were the exclusive location of protein translocation activity. Based on these studies we conclude that sequestration of membrane proteins to rough domains of ER probably occurs in a like manner in yeast and mammalian cells
Improve the performance of transfer learning without fine-tuning using dissimilarity-based multi-view learning for breast cancer histology images
Breast cancer is one of the most common types of cancer and leading
cancer-related death causes for women. In the context of ICIAR 2018 Grand
Challenge on Breast Cancer Histology Images, we compare one handcrafted feature
extractor and five transfer learning feature extractors based on deep learning.
We find out that the deep learning networks pretrained on ImageNet have better
performance than the popular handcrafted features used for breast cancer
histology images. The best feature extractor achieves an average accuracy of
79.30%. To improve the classification performance, a random forest
dissimilarity based integration method is used to combine different feature
groups together. When the five deep learning feature groups are combined, the
average accuracy is improved to 82.90% (best accuracy 85.00%). When handcrafted
features are combined with the five deep learning feature groups, the average
accuracy is improved to 87.10% (best accuracy 93.00%)
A Graph-Based Semantics Workbench for Concurrent Asynchronous Programs
A number of novel programming languages and libraries have been proposed that
offer simpler-to-use models of concurrency than threads. It is challenging,
however, to devise execution models that successfully realise their
abstractions without forfeiting performance or introducing unintended
behaviours. This is exemplified by SCOOP---a concurrent object-oriented
message-passing language---which has seen multiple semantics proposed and
implemented over its evolution. We propose a "semantics workbench" with fully
and semi-automatic tools for SCOOP, that can be used to analyse and compare
programs with respect to different execution models. We demonstrate its use in
checking the consistency of semantics by applying it to a set of representative
programs, and highlighting a deadlock-related discrepancy between the principal
execution models of the language. Our workbench is based on a modular and
parameterisable graph transformation semantics implemented in the GROOVE tool.
We discuss how graph transformations are leveraged to atomically model
intricate language abstractions, and how the visual yet algebraic nature of the
model can be used to ascertain soundness.Comment: Accepted for publication in the proceedings of FASE 2016 (to appear
Catastrophic senescence and semelparity in the Penna aging model
The catastrophic senescence of the Pacific salmon is among the initial tests
used to validate the Penna aging model. Based on the mutation accumulation
theory, the sudden decrease in fitness following reproduction may be solely
attributed to the semelparity of the species. In this work, we report other
consequences of mutation accumulation. Contrary to earlier findings, such
dramatic manifestation of aging depends not only on the choice of breeding
strategy but also on the value of the reproduction age, R, and the mutation
threshold, T. Senescence is catastrophic when . As the organism's
tolerance for harmful genetic mutations increases, the aging process becomes
more gradual. We observe senescence that is threshold dependent whenever T>R.
That is, the sudden drop in survival rate occurs at age equal to the mutation
threshold value
Developing and applying heterogeneous phylogenetic models with XRate
Modeling sequence evolution on phylogenetic trees is a useful technique in
computational biology. Especially powerful are models which take account of the
heterogeneous nature of sequence evolution according to the "grammar" of the
encoded gene features. However, beyond a modest level of model complexity,
manual coding of models becomes prohibitively labor-intensive. We demonstrate,
via a set of case studies, the new built-in model-prototyping capabilities of
XRate (macros and Scheme extensions). These features allow rapid implementation
of phylogenetic models which would have previously been far more
labor-intensive. XRate's new capabilities for lineage-specific models,
ancestral sequence reconstruction, and improved annotation output are also
discussed. XRate's flexible model-specification capabilities and computational
efficiency make it well-suited to developing and prototyping phylogenetic
grammar models. XRate is available as part of the DART software package:
http://biowiki.org/DART .Comment: 34 pages, 3 figures, glossary of XRate model terminolog
Sensory Electrical Stimulation Improves Foot Placement during Targeted Stepping Post-Stroke
Proper foot placement is vital for maintaining balance during walking, requiring the integration of multiple sensory signals with motor commands. Disruption of brain structures post-stroke likely alters the processing of sensory information by motor centers, interfering with precision control of foot placement and walking function for stroke survivors. In this study, we examined whether somatosensory stimulation, which improves functional movements of the paretic hand, could be used to improve foot placement of the paretic limb. Foot placement was evaluated before, during, and after application of somatosensory electrical stimulation to the paretic foot during a targeted stepping task. Starting from standing, twelve chronic stroke participants initiated movement with the non-paretic limb and stepped to one of five target locations projected onto the floor with distances normalized to the paretic stride length. Targeting error and lower extremity kinematics were used to assess changes in foot placement and limb control due to somatosensory stimulation. Significant reductions in placement error in the medial–lateral direction (p = 0.008) were observed during the stimulation and post-stimulation blocks. Seven participants, presenting with a hip circumduction walking pattern, had reductions (p = 0.008) in the magnitude and duration of hip abduction during swing with somatosensory stimulation. Reductions in circumduction correlated with both functional and clinical measures, with larger improvements observed in participants with greater impairment. The results of this study suggest that somatosensory stimulation of the paretic foot applied during movement can improve the precision control of foot placement
Participation and satisfaction after spinal cord injury: results of a vocational and leisure outcome study
Study design: Survey. Objectives: Insight in (1) the changes in participation in vocational and leisure activities and (2) satisfaction with the current participation level of people with spinal cord injuries (SCIs) after reintegration in society. Design: Descriptive analysis of data from a questionnaire. Setting: Rehabilitation centre with special department for patients with SCIs, Groningen, The Netherlands. Subjects: A total of 57 patients with traumatic SCI living in the community, who were admitted to the rehabilitation centre two to 12 years before the current assessment. Main outcome measures: Changes in participation in activities; current life satisfaction; support and unmet needs. Results: Participation expressed in terms of hours spent on vocational and leisure activities changed to a great extent after the SCI. This was mainly determined by a large reduction of hours spent on paid work. While 60% of the respondents successfully reintegrated in work, many changes took place in the type and extent of the job. Loss of work was partially compensated with domestic and leisure activities. Sports activities were reduced substantially. The change in participation level and compensation for the lost working hours was not significantly associated with the level of SCI-specific health problems and disabilities. As was found in other studies, most respondents were satisfied with their lives. Determinants of a negative life satisfaction several years following SCI were not easily indicated. Reduced quality of life was particularly related to an unsatisfactory work and leisure situation. Conclusions: Most people with SCI in this study group were able to resume work and were satisfied with their work and leisure situation
N-player quantum games in an EPR setting
The -player quantum game is analyzed in the context of an
Einstein-Podolsky-Rosen (EPR) experiment. In this setting, a player's
strategies are not unitary transformations as in alternate quantum
game-theoretic frameworks, but a classical choice between two directions along
which spin or polarization measurements are made. The players' strategies thus
remain identical to their strategies in the mixed-strategy version of the
classical game. In the EPR setting the quantum game reduces itself to the
corresponding classical game when the shared quantum state reaches zero
entanglement. We find the relations for the probability distribution for
-qubit GHZ and W-type states, subject to general measurement directions,
from which the expressions for the mixed Nash equilibrium and the payoffs are
determined. Players' payoffs are then defined with linear functions so that
common two-player games can be easily extended to the -player case and
permit analytic expressions for the Nash equilibrium. As a specific example, we
solve the Prisoners' Dilemma game for general . We find a new
property for the game that for an even number of players the payoffs at the
Nash equilibrium are equal, whereas for an odd number of players the
cooperating players receive higher payoffs.Comment: 26 pages, 2 figure
Paradoxical effects of Worrisome Thoughts Suppression: the influence of depressive mood
Thought suppression increases the persistence of unwanted idiosyncratic worries
thoughts when individuals try to suppress them. The failure of suppression may
contribute to the development and maintenance of emotional disorders. Depressive
people seem particulary prone to engage in unsuccessful mental control strategies such
as thought suppression. Worry has been reported to be elevated in depressed individuals
and a dysphoric mood may also contribute for the failure of suppression. No studies
examine, however, the suppression of worisome thoughts in individuals with depressive
symptoms. To investigate the suppression effects of worrisome thoughts, 46
participants were selected according to the cut-off score of a depressive
symptomatology scale and they were divided in two groups (subclinical and nonclinical
group). All the individuals took part in an experimental paradigm of thought
suppression. The results of the mixed factorial analysis of variance revealed an
increased frequency of worrisome thoughts during the suppression phase on depending
of the depressive symptoms. These findings confirm that depressive mood can reduce
the success of suppression.info:eu-repo/semantics/publishedVersio
Ultra-strong Adhesion of Graphene Membranes
As mechanical structures enter the nanoscale regime, the influence of van der
Waals forces increases. Graphene is attractive for nanomechanical systems
because its Young's modulus and strength are both intrinsically high, but the
mechanical behavior of graphene is also strongly influenced by the van der
Waals force. For example, this force clamps graphene samples to substrates, and
also holds together the individual graphene sheets in multilayer samples. Here
we use a pressurized blister test to directly measure the adhesion energy of
graphene sheets with a silicon oxide substrate. We find an adhesion energy of
0.45 \pm 0.02 J/m2 for monolayer graphene and 0.31 \pm 0.03 J/m2 for samples
containing 2-5 graphene sheets. These values are larger than the adhesion
energies measured in typical micromechanical structures and are comparable to
solid/liquid adhesion energies. We attribute this to the extreme flexibility of
graphene, which allows it to conform to the topography of even the smoothest
substrates, thus making its interaction with the substrate more liquid-like
than solid-like.Comment: to appear in Nature Nanotechnolog
- …
