3,324 research outputs found

    Carcass of Dead Policies: The Irrelevance of NATO

    Get PDF

    Decreasing initial telomere length in humans intergenerationally understates age-associated telomere shortening

    Get PDF
    Telomere length shortens with aging, and short telomeres have been linked to a wide variety of pathologies. Previous studies suggested a discrepancy in age-associated telomere shortening rate estimated by cross-sectional studies versus the rate measured in longitudinal studies, indicating a potential bias in cross-sectional estimates. Intergenerational changes in initial telomere length, such as that predicted by the previously described effect of a father's age at birth of his offspring (FAB), could explain the discrepancy in shortening rate measurements. We evaluated whether changes occur in initial telomere length over multiple generations in three large datasets and identified paternal birth year (PBY) as a variable that reconciles the difference between longitudinal and cross-sectional measurements. We also clarify the association between FAB and offspring telomere length, demonstrating that this effect is substantially larger than reported in the past. These results indicate the presence of a downward secular trend in telomere length at birth over generational time with potential public health implications

    Editorial: The role of dispersal and transmission in structuring microbial communities

    Get PDF
    Microbial communities influence the systems they inhabit by driving ecosystem processes and promoting the health and fitness of plant and animals hosts. While an extensive body of work has documented variation in microbial community membership across hosts and systems, understanding the drivers of this variation remains a challenge. Much of the focus of these efforts has been on the characterization of host variation or the abiotic environment, and has overlooked the role of dispersal, i.e., the movement of organisms across space, and transmission, i.e., the movement of microbes among environments, hosts and between hosts and their environment

    Resolving ice cloud optical thickness biases between CALIOP and MODIS using infrared retrievals

    Get PDF
    Despite its importance as one of the key radiative properties that determines the impact of upper tropospheric clouds on the radiation balance, ice cloud optical thickness (IOT) has proven to be one of the more challenging properties to retrieve from space-based remote sensing measurements. In particular, optically thin upper tropospheric ice clouds (cirrus) have been especially challenging due to their tenuous nature, extensive spatial scales, and complex particle shapes and light-scattering characteristics. The lack of independent validation motivates the investigation presented in this paper, wherein systematic biases between MODIS Collection 5 (C5) and CALIOP Version 3 (V3) unconstrained retrievals of tenuous IOT (&lt; 3) are examined using a month of collocated A-Train observations. An initial comparison revealed a factor of 2 bias between the MODIS and CALIOP IOT retrievals. This bias is investigated using an infrared (IR) radiative closure approach that compares both products with MODIS IR cirrus retrievals developed for this assessment. The analysis finds that both the MODIS C5 and the unconstrained CALIOP V3 retrievals are biased (high and low, respectively) relative to the IR IOT retrievals. Based on this finding, the MODIS and CALIOP algorithms are investigated with the goal of explaining and minimizing the biases relative to the IR. For MODIS we find that the assumed ice single-scattering properties used for the C5 retrievals are not consistent with the mean IR COT distribution. The C5 ice scattering database results in the asymmetry parameter (<i>g</i>) varying as a function of effective radius with mean values that are too large. The MODIS retrievals have been brought into agreement with the IR by adopting a new ice scattering model for Collection 6 (C6) consisting of a modified gamma distribution comprised of a single habit (severely roughened aggregated columns); the C6 ice cloud optical property models have a constant <i>g</i> ≈ 0.75 in the mid-visible spectrum, 5–15 % smaller than C5. For CALIOP, the assumed lidar ratio for unconstrained retrievals is fixed at 25 sr for the V3 data products. This value is found to be inconsistent with the constrained (predominantly nighttime) CALIOP retrievals. An experimental data set was produced using a modified lidar ratio of 32 sr for the unconstrained retrievals (an increase of 28 %), selected to provide consistency with the constrained V3 results. These modifications greatly improve the agreement with the IR and provide consistency between the MODIS and CALIOP products. Based on these results the recently released MODIS C6 optical products use the single-habit distribution given above, while the upcoming CALIOP V4 unconstrained algorithm will use higher lidar ratios for unconstrained retrievals

    Exploring Aerosols near Clouds with High-Spatial-Resolution Aircraft Remote Sensing During SEAC4RS

    Get PDF
    Since aerosols are important to our climate system, we seek to observe the variability of aerosol properties within cloud systems. When applied to the satelliteborne Moderateresolution Imaging Spectroradiometer (MODIS), the Dark Target retrieval algorithm provides global aerosol optical depth (AOD; at 0.55 m) in cloudfree scenes. Since MODIS' resolution (500m pixels, 3 or 10km product) is too coarse for studying nearcloud aerosol, we ported the Dark Target algorithm to the highresolution (~50m pixels) enhancedMODIS Airborne Simulator (eMAS), which flew on the highaltitude ER2 during the Studies of Emissions, Atmospheric Composition, Clouds, and Climate Coupling by Regional Surveys Airborne Science Campaign over the United States in 2013. We find that even with aggressive cloud screening, the ~0.5km eMAS retrievals show enhanced AOD, especially within 6 km of a detected cloud. To determine the cause of the enhanced AOD, we analyze additional eMAS products (cloud retrievals and degradedresolution AOD), coregistered Cloud Physics Lidar profiles, MODIS aerosol retrievals, and groundbased Aerosol Robotic Network observations. We also define spatial metrics to indicate local cloud distributions near each retrieval and then separate into nearcloud and farfromcloud environments. The comparisons show that low cloud masking is robust, and unscreened thin cirrus would have only a small impact on retrieved AOD. Some of the enhancement is consistent with clearcloud transition zone microphysics such as aerosol swelling. However, 3D radiation interaction between clouds and the surrounding clear air appears to be the primary cause of the high AOD near clouds

    Standing dead trees contribute significantly to carbon budgets in Australian savannas

    Get PDF
    Previous estimates of greenhouse gas emissions from Australian savanna fires have incorporated on-ground dead wood but ignored standing dead trees. However, research from eucalypt woodlands in southern Queensland has shown that the two pools of dead wood burn at similar rates. New field data from semiarid savannas across northern Australia confirmed that standing dead trees comprise about four times the mass of on-ground dead wood. Further, the proportion of total woody biomass comprising dead wood increases with decreasing fire frequency and a decreasing proportion of late dry season (August to December) fires. This gives scope for increasing the carbon stock in the dead wood pool with a reduced fire frequency. Following a previously published approach to quantify total dead wood loads in savannas, new and previously collected data on tree stand structures were used across the whole savanna zone to quantify dead wood loads in equilibrium with historic fire regimes. New parameters are presented for calculating dead wood dynamics including dead trees in Australia's savannas. © 2020 IAWF

    Impact of preoperative therapy on patterns of recurrence in pancreatic cancer

    Get PDF
    AbstractBackgroundA theoretical advantage of preoperative therapy in pancreatic adenocarcinoma is that it facilitates the early treatment of micrometastases and reduces postoperative systemic recurrence.MethodsMedical records of 309 consecutive patients undergoing resection of adenocarcinoma in the head of the pancreas were reviewed. Survival was calculated using the Kaplan–Meier method. Associations between preoperative therapy and patterns of recurrence were determined using chi-squared analysis.ResultsPreoperative therapy was administered to 108 patients and upfront surgery was performed in 201 patients. Preoperative therapy was associated with a significantly longer median disease-free survival of 14 months compared with 12 months in patients submitted to upfront surgery (P = 0.035). The rate of local disease as a component of first site of recurrence was significantly lower with preoperative therapy (11.3%) than with upfront surgery (22.9%) (P = 0.016). Preoperative therapy was associated with a lower rate of hepatic metastasis (21.7%) than upfront surgery (34.3%) (P = 0.026). Preoperative therapy did not affect rates of peritoneal or pulmonary metastasis.ConclusionsPreoperative therapy for pancreatic cancer was associated with longer disease-free survival and lower rates of local and hepatic recurrences. These data support the use of preoperative therapy to reduce systemic and local failures after resection

    Persistence of pharmaceutical compounds and other organic wastewater contaminants in a conventional drinking-water-treatment plant

    Get PDF
    In a study conducted by the US Geological Survey and the Centers for Disease Control and Prevention, 24 water samples were collected at selected locations within a drinking-water-treatment (DWT) facility and from the two streams that serve the facility to evaluate the potential for wastewater-related organic contaminants to survive a conventional treatment process and persist in potable-water supplies. Stream-water samples as well as samples of raw, settled, filtered, and finished water were collected during low-flow conditions, when the discharge of effluent from upstream municipal sewage-treatment plants accounted for 37–67% of flow in stream 1 and 10–20% of flow in stream 2. Each sample was analyzed for 106 organic wastewater-related contaminants (OWCs) that represent a diverse group of extensively used chemicals.Forty OWCs were detected in one or more samples of stream water or raw-water supplies in the treatment plant; 34 were detected in more than 10% of these samples. Several of these compounds also were frequently detected in samples of finished water; these compounds include selected prescription and non-prescription drugs and their metabolites, fragrance compounds, flame retardants and plasticizers, cosmetic compounds, and a solvent. The detection of these compounds suggests that they resist removal through conventional water-treatment processes. Other compounds that also were frequently detected in samples of stream water and rawwater supplies were not detected in samples of finished water; these include selected prescription and non-prescription drugs and their metabolites, disinfectants, detergent metabolites, and plant and animal steroids. The non-detection of these compounds indicates that their concentrations are reduced to levels less than analytical detection limits or that they are transformed to degradates through conventional DWT processes. Concentrations of OWCs detected in finished water generally were low and did not exceed Federal drinking-water standards or lifetime health advisories, although such standards or advisories have not been established for most of these compounds. Also, at least 11 and as many as 17 OWCs were detected in samples of finished water. Drinking-water criteria currently are based on the toxicity of individual compounds and not combinations of compounds. Little is known about potential human-health effects associated with chronic exposure to trace levels of multiple OWCs through routes such as drinking water. The occurrence in drinking-water supplies of many of the OWCs analyzed for during this study is unregulated and most of these compounds have not been routinely monitored for in the Nation’s source- or potable-water supplies. This study provides the first documentation that many of these compounds can survive conventional water-treatment processes and occur in potable-water supplies. It thereby provides information that can be used in setting research and regulatory priorities and in designing future monitoring programs. The results of this study also indicate that improvements in water-treatment processes may benefit from consideration of the response of OWCs and other trace organic contaminants to specific physical and chemical treatments
    • …
    corecore