85,369 research outputs found
Extension of the spin-1/2 frustrated square lattice model: the case of layered vanadium phosphates
We study the influence of the spin lattice distortion on the properties of
frustrated magnetic systems and consider the applicability of the spin-1/2
frustrated square lattice model to materials lacking tetragonal symmetry. We
focus on the case of layered vanadium phosphates AA'VO(PO4)2 (AA' = Pb2, SrZn,
BaZn, and BaCd). To provide a proper microscopic description of these
compounds, we use extensive band structure calculations for real materials and
model structures and supplement this analysis with simulations of thermodynamic
properties, thus facilitating a direct comparison with the experimental data.
Due to the reduced symmetry, the realistic spin model of layered vanadium
phosphates AA'VO(PO4)2 includes four inequivalent exchange couplings: J1 and
J1' between nearest-neighbors and J2 and J2' between next-nearest-neighbors.
The estimates of individual exchange couplings suggest different regimes, from
J1'/J1 and J2'/J2 close to 1 in BaCdVO(PO4)2, a nearly regular frustrated
square lattice, to J1'/J1 ~ 0.7 and J2'/J2 ~ 0.4 in SrZnVO(PO4)2, a frustrated
square lattice with sizable distortion. The underlying structural differences
are analyzed, and the key factors causing the distortion of the spin lattice in
layered vanadium compounds are discussed. We propose possible routes for
finding new frustrated square lattice materials among complex vanadium oxides.
Full diagonalization simulations of thermodynamic properties indicate the
similarity of the extended model to the regular one with averaged couplings. In
case of moderate frustration and moderate distortion, valid for all the
AA'VO(PO4)2 compounds reported so far, the distorted spin lattice can be
considered as a regular square lattice with the couplings (J1+J1')/2 between
nearest-neighbors and (J2+J2')/2 between next-nearest-neighbors.Comment: 14 pages, 9 figures, 4 table
Spontaneous Spin Polarization in Quantum Wires
A number of recent experiments report spin polarization in quantum wires in
the absence of magnetic fields. These observations are in apparent
contradiction with the Lieb-Mattis theorem, which forbids spontaneous spin
polarization in one dimension. We show that sufficiently strong interactions
between electrons induce deviations from the strictly one-dimensional geometry
and indeed give rise to a ferromagnetic ground state in a certain range of
electron densities.Comment: 4 pages, 4 figure
Quantum lattice gases and their invariants
The one particle sector of the simplest one dimensional quantum lattice gas
automaton has been observed to simulate both the (relativistic) Dirac and
(nonrelativistic) Schroedinger equations, in different continuum limits. By
analyzing the discrete analogues of plane waves in this sector we find
conserved quantities corresponding to energy and momentum. We show that the
Klein paradox obtains so that in some regimes the model must be considered to
be relativistic and the negative energy modes interpreted as positive energy
modes of antiparticles. With a formally similar approach--the Bethe ansatz--we
find the evolution eigenfunctions in the two particle sector of the quantum
lattice gas automaton and conclude by discussing consequences of these
calculations and their extension to more particles, additional velocities, and
higher dimensions.Comment: 19 pages, plain TeX, 11 PostScript figures included with epsf.tex
(ignore the under/overfull \vbox error messages
Formation of defects in multirow Wigner crystals
We study the structural properties of a quasi-one-dimensional classical
Wigner crystal, confined in the transverse direction by a parabolic potential.
With increasing density, the one-dimensional crystal first splits into a zigzag
crystal before progressively more rows appear. While up to four rows the ground
state possesses a regular structure, five-row crystals exhibit defects in a
certain density regime. We identify two phases with different types of defects.
Furthermore, using a simplified model, we show that beyond nine rows no stable
regular structures exist.Comment: 11 pages, 8 figure
Analytic invariant charge and the lattice static quark-antiquark potential
A recently developed model for the QCD analytic invariant charge is compared
with quenched lattice simulation data on the static quark-antiquark potential.
By employing this strong running coupling one is able to obtain the confining
quark-antiquark potential in the framework of the one-gluon exchange model. To
achieve this objective a technique for evaluating the integrals of a required
form is developed. Special attention is paid here to removing the divergences
encountered the calculations. All this enables one to examine the asymptotic
behavior of the potential at both small and large distances with high accuracy.
An explicit expression for the quark-antiquark potential, which interpolates
between these asymptotics, and satisfies the concavity condition, is proposed.
The derived potential coincides with the perturbative results at small
distances, and it is in a good agreement with the lattice data in the
nonperturbative physically-relevant region. An estimation of the parameter
is obtained for the case of pure gluodynamics. It is found to
be consistent with all the previous estimations of in the
framework of approach in hand.Comment: LaTeX2e, 10 pages with 3 EPS figure
Two-temperature coronal flow above a thin disk
We extended the disk corona model (Meyer & Meyer-Hofmeister 1994; Meyer, Liu,
& Meyer-Hofmeister 2000a) to the inner region of galactic nuclei by including
different temperatures in ions and electrons as well as Compton cooling. We
found that the mass evaporation rate and hence the fraction of accretion energy
released in the corona depend strongly on the rate of incoming mass flow from
outer edge of the disk, a larger rate leading to more Compton cooling, less
efficient evaporation and a weaker corona. We also found a strong dependence on
the viscosity, higher viscosity leading to an enhanced mass flow in the corona
and therefore more evaporation of gas from the disk below. If we take accretion
rates in units of the Eddington rate our results become independent on the mass
of the central black hole. The model predicts weaker contributions to the hard
X-rays for objects with higher accretion rate like narrow-line Seyfert 1
galaxies (NLS1s), in agreement with observations. For luminous active galactic
nuclei (AGN) strong Compton cooling in the innermost corona is so efficient
that a large amount of additional heating is required to maintain the corona
above the thin disk.Comment: 17 pages, 6 figures. ApJ accepte
Direct current driven by ac electric field in quantum wells
It is shown that the excitation of charge carriers by ac electric field with
zero average driving leads to a direct electric current in quantum well
structures. The current emerges for both linear and circular polarization of
the ac electric field and depends on the field polarization and frequency. We
present a micoscopic model and an analytical theory of such a nonlinear
electron transport in quantum wells with structure inversion asymmetry. In such
systems, dc current is induced by ac electric field which has both the in-plane
and out-of-plane components. The ac field polarized in the interface plane
gives rise to a direct current if the quantum well is subjected to an in-plane
static magnetic field.Comment: 6 pages, 3 figure
- …