6,460 research outputs found

    The radio afterglow of Swift J1644+57 reveals a powerful jet with fast core and slow sheath

    Full text link
    We model the non-thermal transient Swift J1644+57 as resulting from a relativistic jet powered by the accretion of a tidally-disrupted star onto a super-massive black hole. Accompanying synchrotron radio emission is produced by the shock interaction between the jet and the dense circumnuclear medium, similar to a gamma-ray burst afterglow. An open mystery, however, is the origin of the late-time radio rebrightening, which occurred well after the peak of the jetted X-ray emission. Here, we systematically explore several proposed explanations for this behavior by means of multi-dimensional hydrodynamic simulations coupled to a self-consistent radiative transfer calculation of the synchrotron emission. Our main conclusion is that the radio afterglow of Swift J1644+57 is not naturally explained by a jet with a one-dimensional top-hat angular structure. However, a more complex angular structure comprised of an ultra-relativistic core (Lorentz factor Γ10\Gamma \sim 10) surrounded by a slower (Γ\Gamma \sim 2) sheath provides a reasonable fit to the data. Such a geometry could result from the radial structure of the super-Eddington accretion flow or as the result of jet precession. The total kinetic energy of the ejecta that we infer of \sim few 105310^{53}\,erg requires a highly efficient jet launching mechanism. Our jet model providing the best fit to the light curve of the on-axis event Swift J1644+57 is used to predict the radio light curves for off-axis viewing angles. Implications for the presence of relativistic jets from TDEs detected via their thermal disk emission, as well as the prospects for detecting orphan TDE afterglows with upcoming wide-field radio surveys and resolving the jet structure with long baseline interferometry, are discussed.Comment: Accepted for publication in MNRA

    Relativistic Jets and Long-Duration Gamma-ray Bursts from the Birth of Magnetars

    Full text link
    We present time-dependent axisymmetric magnetohydrodynamic simulations of the interaction of a relativistic magnetized wind produced by a proto-magnetar with a surrounding stellar envelope, in the first 10\sim 10 seconds after core collapse. We inject a super-magnetosonic wind with E˙=1051\dot E = 10^{51} ergs s1^{-1} into a cavity created by an outgoing supernova shock. A strong toroidal magnetic field builds up in the bubble of plasma and magnetic field that is at first inertially confined by the progenitor star. This drives a jet out along the polar axis of the star, even though the star and the magnetar wind are each spherically symmetric. The jet has the properties needed to produce a long-duration gamma-ray burst (GRB). At 5\sim 5 s after core bounce, the jet has escaped the host star and the Lorentz factor of the material in the jet at large radii 1011\sim 10^{11} cm is similar to that in the magnetar wind near the source. Most of the spindown power of the central magnetar escapes via the relativistic jet. There are fluctuations in the Lorentz factor and energy flux in the jet on 0.010.1\sim 0.01-0.1 second timescale. These may contribute to variability in GRB emission (e.g., via internal shocks).Comment: 5 pages, 3 figures, accepted in MNRAS letter, presented at the conference "Astrophysics of Compact Objects", 1-7 July, Huangshan, Chin

    Evaluation of wind tunnel performance testings of an advanced 45 deg swept 8-bladed propeller at Mach numbers from 0.45 to 0.85

    Get PDF
    The increased emphasis of fuel conservation in the world and the rapid increase in the cost of jet fuel has stimulated a series of studies of both conventional and unconventional propulsion systems for commercial aircraft. The results of these studies indicate that a fuel saving of 15 to 30 percent may be realized by the use of an advanced high-speed turboprop (Prop-Fan) compared to aircraft equipped with high bypass turbofan engines of equivalent technology. The Prop-Fan propulsion system is being investigated as part of the NASA Aircraft Energy Efficient Program. This effort includes the wind tunnel testing of a series of 8 and 10-blade Prop-Fan models incorporate swept blades. Test results indicate efficiency levels near the goal of 80 percent at Mach 0.8 cruise and an altitude of 10.67 km (35,000 ft). Each successive swept model has shown improved efficiency relative to the straight blade model. The fourth model, with 45 deg swept blades reported herein, shows a net efficiency of 78.2 at the design point with a power loading of 301 kW/sq meter and a tip speed of 243.8 m/sec (800 ft/sec.)

    Noise and wake structure measurements in a subsonic tip speed fan

    Get PDF
    The results of an experimental program are reported which show the effect of blade angle, tip speed, fan pressure ratio, and thrust on noise of a model fan of 0.457m (18 inches) diameter operating at subsonic tip speeds at pressure ratios between 1.06 and 1.15. The fan used in this study had 12 blades, 7 stator vanes, and a spacing between the rotor and stator of 1.85 blade chords. This fan was originally designed for aerodynamic testing and was considered a good performer. It was used in the noise test program as it incorporated features found to reduce noise in an earlier analytical parametric study. For a given pressure ratio the fan was shown to exhibit minimum noise at the blade angle and tip speed near that of maximum aerodynamic efficiency. Also, the noise level and spectrum character of this fan showed excellent correlation with scaled data of a similar larger diameter fan. Results of the program confirm the trends shown in the earlier analytical parametric study which showed that fan noise could be reduced for a given thrust and pressure ratio by increasing fan solidity, improving fan aerodynamic design, and operating the fan at an optimum subsonic tip speed. In addition to noise, the blade wake characteristics at the leading edge of the stator were measured in this program. At root and tip sections some difference between predicted and measured wakes was found. However comparisons between predicted and measured wakes at mid span locations was found to be good

    The formation of high-field magnetic white dwarfs from common envelopes

    Full text link
    The origin of highly-magnetized white dwarfs has remained a mystery since their initial discovery. Recent observations indicate that the formation of high-field magnetic white dwarfs is intimately related to strong binary interactions during post-main-sequence phases of stellar evolution. If a low-mass companion, such as a planet, brown dwarf, or low-mass star is engulfed by a post-main-sequence giant, the hydrodynamic drag in the envelope of the giant leads to a reduction of the companion's orbit. Sufficiently low-mass companions in-spiral until they are shredded by the strong gravitational tides near the white dwarf core. Subsequent formation of a super-Eddington accretion disk from the disrupted companion inside a common envelope can dramatically amplify magnetic fields via a dynamo. Here, we show that these disk-generated fields are sufficiently strong to explain the observed range of magnetic field strengths for isolated, high-field magnetic white dwarfs. A higher-mass binary analogue may also contribute to the origin of magnetar fields.Comment: Accepted to Proceedings of the National Academy of Sciences. Under PNAS embargo until time of publicatio
    corecore