22 research outputs found
The renal blood flow reserve in healthy humans and patients with atherosclerotic renovascular disease measured by positron emission tomography using [O-15]H2O
Background: Microvascular function plays an important role in ARVD (atherosclerotic renovascular disease). RFR (renal flow reserve), the capacity of renal vasculature to dilate, is known to reflect renal microvascular function. In this pilot study, we assessed PET (positron emission tomography)-based RFR values of healthy persons and renal artery stenosis patients.Seventeen patients with ARVD and eight healthy subjects were included in the study. Intravenous enalapril 1 mg was used as a vasodilatant, and the maximum response (blood pressure and RFR) to it was measured at 40 min. Renal perfusion was measured by means of oxygen-15-labeled water PET. RFR was calculated as a difference of stress flow and basal flow and was expressed as percent [(stress blood flow - basal blood flow)/basal blood flow] x 100%.Results: RFR of the healthy was 22%. RFR of the stenosed kidneys of bilateral stenosis patients (27%) was higher than that of the stenosed kidneys of unilateral stenosis patients (15%). RFR of the contralateral kidneys of unilateral stenosis patients was 21%. There was no difference of statistical significance between RFR values of ARVD subgroups or between ARVD subgroups and the healthy. In the stenosed kidneys of unilateral ARVD patients, stenosis grade of the renal artery correlated negatively with basal (p = 0.04) and stress flow (p = 0.02). Dispersion of RFR values was high.Conclusions: This study is the first to report [O-15]H2O PET-based RFR values of healthy subjects and ARVD patients in humans. The difference between RFR values of ARVD patients and the healthy did not reach statistical significance perhaps because of high dispersion of RFR values. [O-15]H2O PET is a valuable non-invasive and quantitative method to evaluate renal blood flow though high dispersion makes imaging challenging. Larger studies are needed to get more information about [O-15]H2O PET method in evaluation of renal blood flow
Prognostic imaging biomarkers for diabetic kidney disease (iBEAt): Study protocol
Background: Diabetic kidney disease (DKD) remains one of the leading causes of premature death in diabetes. DKD is classified on albuminuria and reduced kidney function (estimated glomerular filtration rate (eGFR)) but these have modest value for predicting future renal status. There is an unmet need for biomarkers that can be used in clinical settings which also improve prediction of renal decline on top of routinely available data, particularly in the early stages. The iBEAt study of the BEAt-DKD project aims to determine whether renal imaging biomarkers (magnetic resonance imaging (MRI) and ultrasound (US)) provide insight into the pathogenesis and heterogeneity of DKD (primary aim) and whether they have potential as prognostic biomarkers in DKD (secondary aim). Methods: iBEAt is a prospective multi-centre observational cohort study recruiting 500 patients with type 2 diabetes (T2D) and eGFR ≥30 ml/min/1.73m2. At baseline, blood and urine will be collected, clinical examinations will be performed, and medical history will be obtained. These assessments will be repeated annually for 3 years. At baseline each participant will also undergo quantitative renal MRI and US with central processing of MRI images. Biological samples will be stored in a central laboratory for biomarker and validation studies, and data in a central data depository. Data analysis will explore the potential associations between imaging biomarkers and renal function, and whether the imaging biomarkers improve the prediction of DKD progression. Ancillary substudies will: (1) validate imaging biomarkers against renal histopathology; (2) validate MRI based renal blood flow measurements against H2O15 positron-emission tomography (PET); (3) validate methods for (semi-)automated processing of renal MRI; (4) examine longitudinal changes in imaging biomarkers; (5) examine whether glycocalyx and microvascular measures are associated with imaging biomarkers and eGFR decline; (6) explore whether the findings in T2D can be extrapolated to type 1 diabetes. Discussion: iBEAt is the largest DKD imaging study to date and will provide valuable insights into the progression and heterogeneity of DKD. The results may contribute to a more personalised approach to DKD management in patients with T2D. Trial registration: Clinicaltrials.gov (NCT03716401)
Prognostic imaging biomarkers for diabetic kidney disease (iBEAt): study protocol
Background: Diabetic kidney disease (DKD) remains one of the leading causes of premature death in diabetes. DKD is classified on albuminuria and reduced kidney function (estimated glomerular filtration rate (eGFR)) but these have modest value for predicting future renal status. There is an unmet need for biomarkers that can be used in clinical settings which also improve prediction of renal decline on top of routinely available data, particularly in the early stages. The iBEAt study of the BEAt-DKD project aims to determine whether renal imaging biomarkers (magnetic resonance imaging (MRI) and ultrasound (US)) provide insight into the pathogenesis and heterogeneity of DKD (primary aim) and whether they have potential as prognostic biomarkers in DKD (secondary aim). Methods: iBEAt is a prospective multi-centre observational cohort study recruiting 500 patients with type 2 diabetes (T2D) and eGFR >= 30 ml/min/1.73m(2). At baseline, blood and urine will be collected, clinical examinations will be performed, and medical history will be obtained. These assessments will be repeated annually for 3 years. At baseline each participant will also undergo quantitative renal MRI and US with central processing of MRI images. Biological samples will be stored in a central laboratory for biomarker and validation studies, and data in a central data depository. Data analysis will explore the potential associations between imaging biomarkers and renal function, and whether the imaging biomarkers improve the prediction of DKD progression. Ancillary substudies will: (1) validate imaging biomarkers against renal histopathology; (2) validate MRI based renal blood flow measurements against H2O15 positron-emission tomography (PET); (3) validate methods for (semi-)automated processing of renal MRI; (4) examine longitudinal changes in imaging biomarkers; (5) examine whether glycocalyx and microvascular measures are associated with imaging biomarkers and eGFR decline; (6) explore whether the findings in T2D can be extrapolated to type 1 diabetes. Discussion: iBEAt is the largest DKD imaging study to date and will provide valuable insights into the progression and heterogeneity of DKD. The results may contribute to a more personalised approach to DKD management in patients with T2D.</div
Elevation of the antifibrotic peptide N-acetyl-seryl-aspartyl-lysyl-proline: a blood pressure-independent beneficial effect of angiotensin I-converting enzyme inhibitors
Blockade of the renin-angiotensin system (RAS) is well recognized as an essential therapy in hypertensive, heart, and kidney diseases. There are several classes of drugs that block the RAS; these drugs are known to exhibit antifibrotic action. An analysis of the molecular mechanisms of action for these drugs can reveal potential differences in their antifibrotic roles. In this review, we discuss the antifibrotic action of RAS blockade with an emphasis on the potential importance of angiotensin I-converting enzyme (ACE) inhibition associated with the antifibrotic peptide N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP)
Rationale, Design and Baseline Characteristics of Participants in the Cardiovascular Outcomes for People Using Anticoagulation Strategies (COMPASS) Trial
BACKGROUND: Long-term aspirin prevents vascular events but is only modestly effective. Rivaroxaban alone or in combination with aspirin might be more effective than aspirin alone for vascular prevention in patients with stable coronary artery disease (CAD) or peripheral artery disease (PAD). Rivaroxaban as well as aspirin increase upper gastrointestinal (GI) bleeding and this might be prevented by proton pump inhibitor therapy. METHODS: Cardiovascular Outcomes for People Using Anticoagulation Strategies (COMPASS) is a double-blind superiority trial comparing rivaroxaban 2.5 mg twice daily combined with aspirin 100 mg once daily or rivaroxaban 5 mg twice daily vs aspirin 100 mg once daily for prevention of myocardial infarction, stroke, or cardiovascular death in patients with stable CAD or PAD. Patients not taking a proton pump inhibitor were also randomized, using a partial factorial design, to pantoprazole 40 mg once daily or placebo. The trial was designed to have at least 90% power to detect a 20% reduction in each of the rivaroxaban treatment arms compared with aspirin and to detect a 50% reduction in upper GI complications with pantoprazole compared with placebo. RESULTS: Between February 2013 and May 2016, we recruited 27,395 participants from 602 centres in 33 countries; 17,598 participants were included in the pantoprazole vs placebo comparison. At baseline, the mean age was 68.2 years, 22.0% were female, 90.6% had CAD, and 27.3% had PAD. CONCLUSIONS: COMPASS will provide information on the efficacy and safety of rivaroxaban, alone or in combination with aspirin, in the long-term management of patients with stable CAD or PAD, and on the efficacy and safety of pantoprazole in preventing upper GI complications in patients receiving antithrombotic therapy
Rivaroxaban with or without Aspirin in Stable Cardiovascular Disease
BACKGROUND
We evaluated whether rivaroxaban alone or in combination with aspirin would be more
effective than aspirin alone for secondary cardiovascular prevention.
METHODS
In this double-blind trial, we randomly assigned 27,395 participants with stable atherosclerotic vascular disease to receive rivaroxaban (2.5 mg twice daily) plus aspirin (100 mg
once daily), rivaroxaban (5 mg twice daily), or aspirin (100 mg once daily). The primary outcome was a composite of cardiovascular death, stroke, or myocardial infarction. The study was stopped for superiority of the rivaroxaban-plus-aspirin group after
a mean follow-up of 23 months.
RESULTS
The primary outcome occurred in fewer patients in the rivaroxaban-plus-aspirin group
than in the aspirin-alone group (379 patients [4.1%] vs. 496 patients [5.4%]; hazard
ratio, 0.76; 95% confidence interval [CI], 0.66 to 0.86; P<0.001; z=−4.126), but major
bleeding events occurred in more patients in the rivaroxaban-plus-aspirin group (288
patients [3.1%] vs. 170 patients [1.9%]; hazard ratio, 1.70; 95% CI, 1.40 to 2.05;
P<0.001). There was no significant difference in intracranial or fatal bleeding between
these two groups. There were 313 deaths (3.4%) in the rivaroxaban-plus-aspirin group
as compared with 378 (4.1%) in the aspirin-alone group (hazard ratio, 0.82; 95% CI,
0.71 to 0.96; P=0.01; threshold P value for significance, 0.0025). The primary outcome
did not occur in significantly fewer patients in the rivaroxaban-alone group than in the
aspirin-alone group, but major bleeding events occurred in more patients in the rivaroxaban-alone group.
CONCLUSIONS
Among patients with stable atherosclerotic vascular disease, those assigned to rivaroxaban (2.5 mg twice daily) plus aspirin had better cardiovascular outcomes and more
major bleeding events than those assigned to aspirin alone. Rivaroxaban (5 mg twice
daily) alone did not result in better cardiovascular outcomes than aspirin alone and
resulted in more major bleeding events. (Funded by Bayer; COMPASS ClinicalTrials.gov
number, NCT01776424.
Genetic architecture of human plasma lipidome and its link to cardiovascular disease
Understanding genetic architecture of plasma lipidome could provide better insights into lipid metabolism and its link to cardiovascular diseases (CVDs). Here, we perform genome-wide association analyses of 141 lipid species (n = 2,181 individuals), followed by phenome-wide scans with 25 CVD related phenotypes (n = 511,700 individuals). We identify 35 lipid-species-associated loci (P <5 x10(-8)), 10 of which associate with CVD risk including five new loci-COL5A1, GLTPD2, SPTLC3, MBOAT7 and GALNT16 (false discovery rate<0.05). We identify loci for lipid species that are shown to predict CVD e.g., SPTLC3 for CER(d18:1/24:1). We show that lipoprotein lipase (LPL) may more efficiently hydrolyze medium length triacylglycerides (TAGs) than others. Polyunsaturated lipids have highest heritability and genetic correlations, suggesting considerable genetic regulation at fatty acids levels. We find low genetic correlations between traditional lipids and lipid species. Our results show that lipidomic profiles capture information beyond traditional lipids and identify genetic variants modifying lipid levels and risk of CVD
Improving manganese circular economy from cellulose by chelation with siderophores immobilized to magnetic microbeads
Manganese (Mn) contained in cellulose is partially responsible for an increased consumption of paper bleaching chemicals (like O₂, H₂O₂), consequently diminishing the efficiency in pulp processing, darkening the pulp and deteriorating pulp quality. Usually, Mn in the paper industry is removed employing the environmentally critical EDTA. A greener alternative constitutes, however, the use of siderophores, high-affinity metal-chelating organic compounds that are produced by microorganisms to acquire metals (Fe and Mn among others), like desferrioxamine B (DFOB) or desferrioxamine E (DFOE). The use of native Mn-transporter proteins, like PratA, constitutes another possibility for Mn removal. The evaluation of utilizing siderophores or PratA for Mn removal from cellulose in a circular economy scheme is therefore essential. Firstly, Mn removal from cellulose was performed by immobilizing siderophores or PratA on magnetic beads (M-PVA C22). Secondly, the beads were incubated overnight with a 2% cellulose suspension, allowing Mn-ligand complex formation. Finally, cellulose suspensions were submitted for Mn quantification, employing either the TCPP [Tetrakis(4-carboxyphenyl)porphyrin] method, the PAN [1-(2-pyridylazo)-2-naphthol] method or the Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES). When non-immobilized ligands were employed, a 31% Mn removal was achieved; when using immobilized ligands, around 10% Mn removal was obtained. Treated and untreated cellulose was analyzed by SEM and the Mn distribution between the solid and liquid phase was parameterized using adsorption isotherm models. This novel greener method proved to be feasible and easy, leading to potential improvements in the paper industry. Next research steps are to optimize Mn removal and quantify Mn recovery after ligand decoupling before scaling-up