1,523 research outputs found

    NM-Scale Anatomy of an Entire Stardust Carrot Track

    Get PDF
    Comet Wild-2 samples collected by NASA s Stardust mission are extremely complex, heterogeneous, and have experienced wide ranges of alteration during the capture process. There are two major types of track morphologies: "carrot" and "bulbous," that reflect different structural/compositional properties of the impactors. Carrot type tracks are typically produced by compact or single mineral grains which survive essentially intact as a single large terminal particle. Bulbous tracks are likely produced by fine-grained or organic-rich impactors [1]. Owing to their challenging nature and especially high value of Stardust samples, we have invested considerable effort in developing both sample preparation and analytical techniques tailored for Stardust sample analyses. Our report focuses on our systematic disassembly and coordinated analysis of Stardust carrot track #112 from the mm to nm-scale

    Chemical Evolution of Presolar Organics in Astromaterials

    Get PDF
    Sub-micron, hollow organic globules reported from several carbonaceous chondrites, interplanetary dust particles, and comet Wild-2 samples returned by NASA?s Stardust mission are enriched in N-15/N-14 and D/H compared with terrestrial materials and the parent materials [1-4]. These anomalies are ascribed to the preservation of presolar cold molecular cloud material from where H, C, and N isotopic constraints point to chemical fractionation near 10 K [5]. An origin well beyond the planet forming region and their survival in meteorites suggests submicrometer organic globules were once prevalent throughout the solar nebula. The survival of the membrane structures indicates primitive meteorites and cometary dust particles would have delivered these organic precursors to the early Earth as well as other planets and satellites. The physical, chemical, and isotopic properties of the organic globules varies to its meteorite types and its lithologies. For example, organic globules in the Tagish Lake meteorite are always embedded in fined grained (poorly crystallized) saponite, and hardly encapsulated in coarse grained serpentine, even though saponite and serpentine are both main components of phyllosilicate matrix of the Tagish Lake meteorite. The organic globules are commonly observed in the carbonate-poor lithology but not in the carbonate-rich one. In Tagish Lake, isolated single globules are common, but in the Bells (CM2) meteorite, globules are mostly aggregated. We will review the evolutions of the organic globules from its birth to alteration in the parent bodies in terms of its own physical and chemical properties as well as its associated minerals

    Mineralogy of Interplanetary Dust Particles from the Comet Giacobini-Zinner Dust Stream Collections

    Get PDF
    The Draconoid meteor shower, originating from comet 21P/Giacobini-Zinner, is a low-velocity Earth-crossing dust stream that had a peak anticipated flux on Oct. 8, 2012. In response to this prediction, NASA performed dedicated stratospheric dust collections to target interplanetary dust particles (IDPs) from this comet stream on Oct 15-17, 2012 [3]. Twelve dust particles from this targeted collection were allocated to our coordinated analysis team for studies of noble gas (Univ. Minnesota, Minnesota State Univ.), SXRF and Fe-XANES (SSL Berkeley) and mineralogy/isotopes (JSC). Here we report a mineralogical study of 3 IDPs from the Draconoid collection.

    Pristine Stratospheric Collections of Cosmic Dust

    Get PDF
    Since 1981, NASA has routinely collected interplanetary dust particles (IDPs) in the stratosphere by inertial impact onto silicone oil-coated flat plate collectors deployed on the wings of high-altitude aircraft [1]. The highly viscous oil traps and localizes the particles, which can fragment during collection. Particles are removed from the collectors with a micromanipulator and washed of the oil using organic solvents, typically hexane or xylene. While silicone oil is an efficient collection medium, its use is problematic. All IDPs are initially coated with this material (polydimethylsiloxane, n(CH3)2SiO) and traces of oil may remain after cleaning. The solvent rinse itself is also a concern as it likely removes indigenous organics from the particles. To avoid these issues, we used a polyurethane foam substrate for the oil-free stratospheric collection of IDPs

    The Spatial Distribution of Organic Matter and Mineralogical Relationships in Carbonaceous Chondrites

    Get PDF
    Organic matter present within primitive carbonaceous meteorites represents the complex conglomeration of species formed in a variety of physically and temporally distinct environments including circumstellar space, the interstellar medium, the Solar Nebula & Jovian sub-nebulae and asteroids. In each case, multiple chemical pathways would have been available for the synthesis of organic molecules. Consequently these meteorites constitute a unique record of organic chemical evolution in the Universe and one of the biggest challenges in organic cosmochemistry has been in deciphering this record. While bulk chemical analysis has provided a detailed description of the range and diversity of organic species present in carbonaceous chondrites, there is virtually no hard experimental data as to how these species are spatially distributed and their relationship to the host mineral matrix, (with one exception). The distribution of organic phases is nevertheless critical to understanding parent body processes. The CM and CI chondrites all display evidence of low temperature (< 350K) interaction with aqueous fluids, which based on O isotope data, flowed along thermal gradients within the respective parent bodies. This pervasive aqueous alteration may have led to aqueous geochromatographic separation of organics and synthesis of new organics coupled to aqueous mineral alteration. To address such issues we have applied the technique of microprobe two-step laser desorption / photoionization mass spectrometry (L2MS) to map in situ the spatial distribution of a broad range of organic species at the micron scale in the freshly exposed matrices of the Bells, Tagish Lake and Murchison (CM2) carbonaceous chondrites

    The Spatial Distribution and Mineralogical Association of Organics in the Tagish Lake and Bells Carbonaceous Chondrites

    Get PDF
    Chondritic meteorites represent some of the most primitive Solar System materials available for laboratory analysis. While the presence of simple organic molecules has been well documented in such materials [1], little is known about their spatial distribution and to what extent, if any, they exhibit specific mineralogical associations. This dichotomy arises since organic analysis typically involves solvent extraction as a preliminary step. To address these issues we have used two-step laser mass spectrometry (L 2MS) to map in situ the spatial distribution of aromatic and conjugated organics at the micron scale in freshly exposed surfaces of the Tagish Lake and Bells carbonaceous chondrites. Our specific goals are two-fold; firstly to investigate if and how abundance of organic species varies within the meteorite matrix both as an ensemble, and with respect to functional group (e.g., R-OH vs. RCH3) and between members of the same homologous series (e.g., R-H vs. R-(CH2)H). Secondly, to determine whether observed spatial variations can be related to specific mineralogical and/or physical characteristics of the host matrix. In regard to the latter we are particularly interested in the role that carbonaceous nanoglobules [2] play as reservoirs of organic matter. Such globules, which are believed to have formed by photochemical processing of organic-rich ices in the presolar cold molecular cloud or the outermost reaches of the early protosolar disk, are abundant in both the Bells and Tagish Lake chondrites and are noteworthy for having particularly high enrichments in 2H and 15N [3,4]

    Coordinated Chemical and Isotopic Imaging of Bells (CM2) Meteorite Matrix

    Get PDF
    Meteoritic organic matter is a complex conglomeration of species formed in distinct environments and processes in circumstellar space, the interstellar medium, the Solar Nebula and asteroids. Consequently meteorites constitute a unique record of primordial organic chemical evolution. While bulk chemical analysis has provided a detailed description of the range and diversity of organic species present in carbonaceous chondrites, there is little information as to how these species are spatially distributed and their relationship to the host mineral matrix. The distribution of organic phases is nevertheless critical to understanding parent body processes. The CM and CI chondrites all display evidence of low temperature (< 350K) aqueous alteration that may have led to aqueous geochromatographic separation of organics and synthesis of new organics coupled to aqueous mineral alteration. Here we present the results of the first coordinated in situ isotopic and chemical mapping study of the Bells meteorite using a newly developed two-step laser mass spectrometer (mu-L(sup 2)MS) capable of measuring a broad range of organic compounds

    STARDUST and Interplanetary Dust Particles - Big Science from Small Samples

    Get PDF
    Comets are primitive bodies that are widely believed to be a reservoir of preserved interstellar and circumstellar grains, and molecular cloud materials (organics). Direct samples of cometary dust along with interstellar grains will be returned by the STARDUST Mission in 2006. Analyses of interplanetary dust particles (IDPs) and analogue materials in the laboratory provide constraints and serve as "ground truth" for evaluating various hypotheses on the nature of comets and interstellar grains. Anhydrous IDPs are the most primitive remnants of the primordial Solar System, and are our only known samples of comets. These cometary lDPs are rich in preserved interstellar organic compounds II]. In addition, abundant interstellar silicates have recently been discovered in cluster lDPs [2]. In some of these IDPs, the presolar silicate abundance reaches 1 wt %, exceeding the total presolar grain abundance in meteorites by three orders of magnitude, where presolar silicates are still notably absent. The results to date support the idea that comets are rich in presolar materials, but are at odds with the common perception that they are 'pristine aggregates of interstellar grains'. These results underscore the scientific importance of sample return missions to comets. The technology for the analysis of micrometer-sized samples is well advanced. The newest generation of ion probe instruments allow for isotopic analyses at the submicrometer level. The nature of the organic matter is analyzed using Infrared and soft X-ray spectroscopy techniques on synchrotron-based instruments, also at the micrometer-scale and smaller. Electron microscopy and spectroscopy provide details on the mineralogy and chemistry of constituent grains in !DPs at nearly the atomic scale. Novel sample preparation techniques have been developed such that all of these measurements can now be made on the same 10 micrometer diameter particle. Returned comet samples captured in aerogel will pose new challenges in sample analysis, but should provide a major leap in our understanding of the fundamental building blocks of our Solar System

    Systematic Examination of Stardust Bulbous Track Wall Materials

    Get PDF
    Analyses of Comet Wild-2 samples returned by NASA's Stardust spacecraft have focused primarily on terminal particles (TPs) or well-preserved fine-grained materials along the track walls [1,2]. However much of the collected material was melted and mixed intimately with the aerogel by the hypervelocity impact [3,4]. We are performing systematic examinations of entire Stardust tracks to establish the mineralogy and origins of all comet Wild 2 components [7,8]. This report focuses on coordinated analyses of indigenous crystalline and amorphous/melt cometary materials along the aerogel track walls, their interaction with aerogel during collection and comparisons with their TPs

    Coordinated In Situ Analyses of Organic Nanoglobules in the Sutter's Mill Meteorite

    Get PDF
    The Sutter s Mill meteorite is a newly fallen carbonaceous chondrite that was collected and curated quickly after its fall [1]. Preliminary petrographic and isotopic investigations suggest affinities to the CM2 carbonaceous chondrites. The primitive nature of this meteorite and its rapid recovery provide an opportunity to investigate primordial solar system organic matter in a unique new sample. Organic matter in primitive meteorites and chondritic porous interplanetary dust particles (CP IDPs) is commonly enriched in D/H and N-15/N-14 relative to terrestrial values [2-4]. These anomalies are ascribed to the partial preservation of presolar cold molecular cloud material [2]. Some meteorites and IDPs contain gm-size inclusions with extreme H and N isotopic anomalies [3-5], possibly due to preserved primordial organic grains. The abundance and isotopic composition of C in Sutter's Mill were found to be similar to the Tagish Lake meteorite [6]. In the Tagish Lake meteorite, the principle carriers of large H and N isotopic anomalies are sub-micron hollow organic spherules known as organic nanoglobules [7]. Organic nanoglobules are commonly distributed among primitive meteorites [8, 9] and cometary samples [10]. Here we report in-situ analyses of organic nano-globules in the Sutter's Mill meteorite using UV fluorescence imaging, Fourier-transform infrared spectroscopy (FTIR), scanning transmission electron microscopy (STEM), NanoSIMS, and ultrafast two-step laser mass spectrometry (ultra-L2MS)
    • …
    corecore