196 research outputs found
EVM and Achievable Data Rate Analysis of Clipped OFDM Signals in Visible Light Communication
Orthogonal frequency division multiplexing (OFDM) has been considered for
visible light communication (VLC) thanks to its ability to boost data rates as
well as its robustness against frequency-selective fading channels. A major
disadvantage of OFDM is the large dynamic range of its time-domain waveforms,
making OFDM vulnerable to nonlinearity of light emitting diodes (LEDs). DC
biased optical OFDM (DCO-OFDM) and asymmetrically clipped optical OFDM
(ACO-OFDM) are two popular OFDM techniques developed for the VLC. In this
paper, we will analyze the performance of the DCO-OFDM and ACO-OFDM signals in
terms of error vector magnitude (EVM), signal-to-distortion ratio (SDR), and
achievable data rates under both average optical power and dynamic optical
power constraints. EVM is a commonly used metric to characterize distortions.
We will describe an approach to numerically calculate the EVM for DCO-OFDM and
ACO-OFDM. We will derive the optimum biasing ratio in the sense of minimizing
EVM for DCO-OFDM. Additionally, we will formulate the EVM minimization problem
as a convex linear optimization problem and obtain an EVM lower bound against
which to compare the DCO-OFDM and ACO-OFDM techniques. We will prove that the
ACO-OFDM can achieve the lower bound. Average optical power and dynamic optical
power are two main constraints in VLC. We will derive the achievable data rates
under these two constraints for both additive white Gaussian noise (AWGN)
channel and frequency-selective channel. We will compare the performance of
DCO-OFDM and ACO-OFDM under different power constraint scenarios
Surface reconstruction induced geometries of Si clusters
We discuss a generalization of the surface reconstruction arguments for the
structure of intermediate size Si clusters, which leads to model geometries for
the sizes 33, 39 (two isomers), 45 (two isomers), 49 (two isomers), 57 and 61
(two isomers). The common feature in all these models is a structure that
closely resembles the most stable reconstruction of Si surfaces, surrounding a
core of bulk-like tetrahedrally bonded atoms. We investigate the energetics and
the electronic structure of these models through first-principles density
functional theory calculations. These models may be useful in understanding
experimental results on the reactivity of Si clusters and their shape as
inferred from mobility measurements.Comment: 9 figures (available from the author upon request) Submitted to Phys.
Rev.
Protomers of Benzocaine: Solvent and Permittivity Dependence
The immediate environment of a molecule can have a profound influence on its properties. Benzocaine, the ethyl ester of para-aminobenzoic acid, which finds an application as a local anesthetic (LA), is found to adopt in its protonated form at least two populations of distinct structures in the gas phase and their relative intensities strongly depend on the properties of the solvent used in the electrospray ionization (ESI) process. Here we combine IR-vibrational spectroscopy with ion mobility-mass spectrometry (IM-MS) to yield gas-phase IR spectra of simultaneously m/z and drift-time resolved species of benzocaine. The results allow for an unambiguous identification of two protomeric species - the N- and O-protonated form. Density functional theory (DFT) calculations link these structures to the most stable solution and gas-phase structures, respectively, with the electric properties of the surrounding medium being the main determinant for the preferred protonation site. The fact that the N-protonated form of benzocaine can be found in the gas phase is owed to kinetic trapping of the solution phase structure during transfer into the experimental setup. These observations confirm earlier studies on similar molecules where N- and O-protonation has been suggested
The Structure of the Chemokine Receptor CXCR1 in Phospholipid Bilayers and Interactions with IL-8
CXCR1 is one of two high-affinity receptors for the CXC chemokine interleukin-8 (IL-8), a major mediator of immune and inflammatory responses implicated in many disorders, including tumor growth(1-3). IL-8, released in response to inflammatory stimuli, binds to the extracellular side of CXCR1. The ligand-activated intracellular signaling pathways result in neutrophil migration to the site of inflammation(2). CXCR1 is a class-A, rhodopsin-like G-protein-coupled receptor (GPCR), the largest class of integral membrane proteins responsible for cellular signal transduction and targeted as drug receptors(4-7). Despite its importance, its molecular mechanism is poorly understood due to the limited structural information available. Recently, structure determination of GPCRs has advanced by tailoring the receptors with stabilizing mutations, insertion of the protein T4 lysozyme and truncations of their amino acid sequences(8), as well as addition of stabilizing antibodies and small molecules(9) that facilitate crystallization in cubic phase monoolein mixtures(10). The intracellular loops of GPCRs are critical for G-protein interactions(11) and activation of CXCR1 involves both N-terminal residues and extracellular loops(2,12,13). Our previous NMR studies indicate that IL-8 binding to the N-terminal residues is mediated by the membrane, underscoring the importance of the phospholipid bilayer for physiological activity(14). Here we report the three-dimensional structure of human CXCR1 determined by NMR spectroscopy. The receptor is in liquid crystalline phospholipid bilayers, without modification of its amino acid sequence and under physiological conditions. Features important for intracellular G-protein activation and signal transduction are revealed
- …