106 research outputs found

    Assessing the geometric diversity of cytochrome P450 ligand conformers by hierarchical clustering with a stop criterion.

    Get PDF
    International audienceAn algorithm is presented, which exhibits a computed number of rigid conformers of an input small molecule, covering the geometric diversity in the conformational space, with minimal structural redundancy. The algorithm calls a conformer generator, then performs an agglomerative hierarchical clustering with the modified clustering gain as the stop criterion. The number of classes is computed without an arbitrary parameter. A representative conformer is selected in each class, and nonrepresentative conformers are discarded. For illustration, the algorithm has been applied on a database containing 70 ligands of the cytochrome CYP 3A4, showing that the structural flexibility of each ligand is indeed handled via a small number of its representative conformers. The method is valid for all small molecules

    About the Algebraic Solutions of Smallest Enclosing Cylinders Problems

    Full text link
    Given n points in Euclidean space E^d, we propose an algebraic algorithm to compute the best fitting (d-1)-cylinder. This algorithm computes the unknown direction of the axis of the cylinder. The location of the axis and the radius of the cylinder are deduced analytically from this direction. Special attention is paid to the case d=3 when n=4 and n=5. For the former, the minimal radius enclosing cylinder is computed algebrically from constrained minimization of a quartic form of the unknown direction of the axis. For the latter, an analytical condition of existence of the circumscribed cylinder is given, and the algorithm reduces to find the zeroes of an one unknown polynomial of degree at most 6. In both cases, the other parameters of the cylinder are deduced analytically. The minimal radius enclosing cylinder is computed analytically for the regular tetrahedron and for a trigonal bipyramids family with a symmetry axis of order 3.Comment: 13 pages, 0 figure; revised version submitted to publication (previous version is a copy of the original one of 2010

    Pocketome: an encyclopedia of small-molecule binding sites in 4D

    Get PDF
    The importance of binding site plasticity in protein–ligand interactions is well-recognized, and so are the difficulties in predicting the nature and the degree of this plasticity by computational means. To assist in understanding the flexible protein–ligand interactions, we constructed the Pocketome, an encyclopedia of about one thousand experimentally solved conformational ensembles of druggable binding sites in proteins, grouped by location and consistent chain/cofactor composition. The multiplicity of pockets within the ensembles adds an extra, fourth dimension to the Pocketome entry data. Within each ensemble, the pockets were carefully classified by the degree of their pairwise similarity and compatibility with different ligands. The core of the Pocketome is derived regularly and automatically from the current releases of the Protein Data Bank and the Uniprot Knowledgebase; this core is complemented by entries built from manually provided seed ligand locations. The Pocketome website (www.pocketome.org) allows searching for the sites of interest, analysis of conformational clusters, important residues, binding compatibility matrices and interactive visualization of the ensembles using the ActiveICM web browser plugin. The Pocketome collection can be used to build multi-conformational docking and 3D activity models as well as to design cross-docking and virtual ligand screening benchmarks

    Virtual Coaching Delivered by Pharmacists to Prevent COVID-19 Transmission

    Get PDF
    Background: While the role of pharmacists in the current pandemic control has been recognized worldwide, their coaching efforts to improve public’s behaviors that could prevent COVID-19 transmission has been rarely investigated. Objectives: To assess whether pharmacist-based virtual health coaching sessions could increase the proportion of people who practised healthy social behaviors, to test whether this model can increase the public acceptance of COVID-19 vaccines, and to measure whether these behaviors could actually prevent contracting COVID-19. Method: In this randomized controlled trial, adults who matched specific criteria were randomly allocated into 2 arms. The active arm received 12 pharmacist-based virtual coaching sessions delivered via Zoom¼ over a month. Participants allocated to the control arm received no coaching. At the end of the last coaching session, both groups were asked to complete a structured questionnaire for outcome assessment. Participants in the active group were followed up to 2 weeks after the end of the last coaching session to check if they contracted COVID-19 or not. The SPSS software version 26.0 (IBM Corp., Chicago, IL) was used for statistical analysis. Results: Of the 300 participants who gave consent for participation, 295 completed the study (147 from the active arm and 148 from the control arm). The proportion of those using face masks, avoiding crowds, and willing to be isolated if infected in the active arm was increased from 51.70%, 53.74%, and 59.86% at baseline to 91.83%, 80.27%, and 96.59% at the end of coaching, respectively (all with P < .05). In addition, the proportion of behaviors, such as disinfecting surfaces, not touching the T-zone, and avoid sharing personal belongings with colleagues at work was increased from 36.05%, 27.89%, and 46.93% at baseline to 63.94%, 52.38%, and 87.75% at the end of coaching, respectively (all with P < .05). Avoid touching the T-zone (OR = 0.43; 95% CI, 0.24-0.89) and using disposable tissues (OR = 0.30; 95% CI, 0.18-0.77), each versus using face masks appropriately were more likely to get COVID-19. Conclusion: Pharmacist-based virtual health coaching could be a potential strategy to increase the proportion of behaviors that could curtail the spread of COVID-19

    Devoloppement of new in-silico screening methods in chemogenomics

    No full text
    La chĂ©moinformatique et la bioinformatique sont des disciplines devenues indispensables Ă  la dĂ©couverte de mĂ©dicaments. De nos jours, les industries pharmaceutiques consacrent prĂšs de 10% de leur budget de recherche et dĂ©veloppement, Ă  la recherche de mĂ©dicaments assistĂ© par ordinateur (Kapetanovic 2008). Cette Ă©mergence peut s’expliquer Ă  la fois par le dĂ©veloppement des architectures de calculs mais aussi par le faible coup qu’engendrent des analyses in silico par rapport Ă  des tests in-vitro.Les essais biologiques qui ont Ă©tĂ© menĂ©s depuis des dĂ©cennies afin d’identifier des mĂ©dicaments potentiels, commencent Ă  former une source trĂšs importante de donnĂ©es et plusieurs bases de donnĂ©es commencent Ă  les rĂ©pertorier. La disponibilitĂ© de ce type de donnĂ©es a favorisĂ© le dĂ©veloppement d’un nouvel axe de recherche appelĂ© la "chĂ©mogĂ©nomique" et qui s’intĂ©resse Ă  l’étude et Ă  l’identification des associations possibles entre plusieurs molĂ©cules et plusieurs cibles. Ainsi, la chĂ©mogĂ©nomique permet de dĂ©terminer le profil biologique d’une molĂ©cule et nous renseigne sur sa capacitĂ© Ă  devenir une touche intĂ©ressante mais aussi Ă  identifier ses possibles effets indĂ©sirables. Des mĂ©thodes de chĂ©moinformatique permettent d’utiliser ces sources de donnĂ©es Ă  des fins d’apprentissage et Ă©tablir des modĂšles prĂ©dictifs qui permettront par la suite de faire des prĂ©dictions pour connaitre l’activitĂ© d’une molĂ©cule.Cette thĂšse a portĂ© sur le dĂ©veloppement et l'utilisation de mĂ©thodes de prĂ©dictions d’association protĂ©ine-ligand. La prĂ©diction d’une association est importante en vue d’un criblage virtuel et peut s’effectuer Ă  l’aide de plusieurs mĂ©thodes. Au sein du laboratoire, on s’intĂ©resse plus particuliĂšrement au profilage de bases de donnĂ©es de molĂ©cules (chimiothĂšques) contre une sĂ©rie de cibles afin d’établir leur profil biologique. J’ai donc essayĂ© au cours de ma thĂšse de mettre au point des modĂšles prĂ©dictifs d’association protĂ©ine-ligand pour un grand nombre de cibles, valider des mĂ©thodes de criblage virtuel rĂ©centes Ă  des fins de profilage mais aussi Ă©tablir un protocole de profilage automatisĂ©, qui dĂ©cide du choix de la mĂ©thode de criblage la plus adaptĂ©e en s’appuyant sur les propriĂ©tĂ©s physico-chimiques du ligand Ă  profiler et de l’éventuelle cible.Chemoinformatics and bioinformatics methods are now necessary in every drug discovery program. Pharmaceutical industries dedicate more than 10% of their research and development investment in computer aided drug design (Kapetanovic 2008). The emergence of these tools can be explained by the increasing availability of high performance calculating machines and also by the low cost of in silico analysis compared to in vitro tests.Biological tests that were performed over last decades are now a valuable source of information and a lot of databases are trying to list them. This huge amount of information led to the birth of a new research field called “chemogenomics”. The latter is focusing on the identification of all possible associations between all possible molecules and all possible targets. Thus, using chemogenomics approaches, one can obtain a biological profile of a molecule and even anticipate possible side effects.This thesis was focused on the development of approaches that aim to predict the binding of molecules to targets. In our lab, we focus on profiling molecular databases in order to get their full biological profile. Thus, my main work was related to this context and I tried to develop predictive models to assess the binding of ligands to proteins, to validate some virtual screening methods for profiling purpose, and finally, I developed an automatic hybrid profiling workflow that selects the best fitted virtual screening approach to use according the ligand/target context

    Développement de nouvelles méthodes de criblage in silico en chémogénomique

    No full text
    Chemoinformatics and bioinformatics methods are now necessary in every drug discovery program. Pharmaceutical industries dedicate more than 10% of their research and development investment in computer aided drug design (Kapetanovic 2008). The emergence of these tools can be explained by the increasing availability of high performance calculating machines and also by the low cost of in silico analysis compared to in vitro tests.Biological tests that were performed over last decades are now a valuable source of information and a lot of databases are trying to list them. This huge amount of information led to the birth of a new research field called “chemogenomics”. The latter is focusing on the identification of all possible associations between all possible molecules and all possible targets. Thus, using chemogenomics approaches, one can obtain a biological profile of a molecule and even anticipate possible side effects.This thesis was focused on the development of approaches that aim to predict the binding of molecules to targets. In our lab, we focus on profiling molecular databases in order to get their full biological profile. Thus, my main work was related to this context and I tried to develop predictive models to assess the binding of ligands to proteins, to validate some virtual screening methods for profiling purpose, and finally, I developed an automatic hybrid profiling workflow that selects the best fitted virtual screening approach to use according the ligand/target context.La chĂ©moinformatique et la bioinformatique sont des disciplines devenues indispensables Ă  la dĂ©couverte de mĂ©dicaments. De nos jours, les industries pharmaceutiques consacrent prĂšs de 10% de leur budget de recherche et dĂ©veloppement, Ă  la recherche de mĂ©dicaments assistĂ© par ordinateur (Kapetanovic 2008). Cette Ă©mergence peut s’expliquer Ă  la fois par le dĂ©veloppement des architectures de calculs mais aussi par le faible coup qu’engendrent des analyses in silico par rapport Ă  des tests in-vitro.Les essais biologiques qui ont Ă©tĂ© menĂ©s depuis des dĂ©cennies afin d’identifier des mĂ©dicaments potentiels, commencent Ă  former une source trĂšs importante de donnĂ©es et plusieurs bases de donnĂ©es commencent Ă  les rĂ©pertorier. La disponibilitĂ© de ce type de donnĂ©es a favorisĂ© le dĂ©veloppement d’un nouvel axe de recherche appelĂ© la "chĂ©mogĂ©nomique" et qui s’intĂ©resse Ă  l’étude et Ă  l’identification des associations possibles entre plusieurs molĂ©cules et plusieurs cibles. Ainsi, la chĂ©mogĂ©nomique permet de dĂ©terminer le profil biologique d’une molĂ©cule et nous renseigne sur sa capacitĂ© Ă  devenir une touche intĂ©ressante mais aussi Ă  identifier ses possibles effets indĂ©sirables. Des mĂ©thodes de chĂ©moinformatique permettent d’utiliser ces sources de donnĂ©es Ă  des fins d’apprentissage et Ă©tablir des modĂšles prĂ©dictifs qui permettront par la suite de faire des prĂ©dictions pour connaitre l’activitĂ© d’une molĂ©cule.Cette thĂšse a portĂ© sur le dĂ©veloppement et l'utilisation de mĂ©thodes de prĂ©dictions d’association protĂ©ine-ligand. La prĂ©diction d’une association est importante en vue d’un criblage virtuel et peut s’effectuer Ă  l’aide de plusieurs mĂ©thodes. Au sein du laboratoire, on s’intĂ©resse plus particuliĂšrement au profilage de bases de donnĂ©es de molĂ©cules (chimiothĂšques) contre une sĂ©rie de cibles afin d’établir leur profil biologique. J’ai donc essayĂ© au cours de ma thĂšse de mettre au point des modĂšles prĂ©dictifs d’association protĂ©ine-ligand pour un grand nombre de cibles, valider des mĂ©thodes de criblage virtuel rĂ©centes Ă  des fins de profilage mais aussi Ă©tablir un protocole de profilage automatisĂ©, qui dĂ©cide du choix de la mĂ©thode de criblage la plus adaptĂ©e en s’appuyant sur les propriĂ©tĂ©s physico-chimiques du ligand Ă  profiler et de l’éventuelle cible

    Devoloppement of new in-silico screening methods in chemogenomics

    No full text
    La chĂ©moinformatique et la bioinformatique sont des disciplines devenues indispensables Ă  la dĂ©couverte de mĂ©dicaments. De nos jours, les industries pharmaceutiques consacrent prĂšs de 10% de leur budget de recherche et dĂ©veloppement, Ă  la recherche de mĂ©dicaments assistĂ© par ordinateur (Kapetanovic 2008). Cette Ă©mergence peut s’expliquer Ă  la fois par le dĂ©veloppement des architectures de calculs mais aussi par le faible coup qu’engendrent des analyses in silico par rapport Ă  des tests in-vitro.Les essais biologiques qui ont Ă©tĂ© menĂ©s depuis des dĂ©cennies afin d’identifier des mĂ©dicaments potentiels, commencent Ă  former une source trĂšs importante de donnĂ©es et plusieurs bases de donnĂ©es commencent Ă  les rĂ©pertorier. La disponibilitĂ© de ce type de donnĂ©es a favorisĂ© le dĂ©veloppement d’un nouvel axe de recherche appelĂ© la "chĂ©mogĂ©nomique" et qui s’intĂ©resse Ă  l’étude et Ă  l’identification des associations possibles entre plusieurs molĂ©cules et plusieurs cibles. Ainsi, la chĂ©mogĂ©nomique permet de dĂ©terminer le profil biologique d’une molĂ©cule et nous renseigne sur sa capacitĂ© Ă  devenir une touche intĂ©ressante mais aussi Ă  identifier ses possibles effets indĂ©sirables. Des mĂ©thodes de chĂ©moinformatique permettent d’utiliser ces sources de donnĂ©es Ă  des fins d’apprentissage et Ă©tablir des modĂšles prĂ©dictifs qui permettront par la suite de faire des prĂ©dictions pour connaitre l’activitĂ© d’une molĂ©cule.Cette thĂšse a portĂ© sur le dĂ©veloppement et l'utilisation de mĂ©thodes de prĂ©dictions d’association protĂ©ine-ligand. La prĂ©diction d’une association est importante en vue d’un criblage virtuel et peut s’effectuer Ă  l’aide de plusieurs mĂ©thodes. Au sein du laboratoire, on s’intĂ©resse plus particuliĂšrement au profilage de bases de donnĂ©es de molĂ©cules (chimiothĂšques) contre une sĂ©rie de cibles afin d’établir leur profil biologique. J’ai donc essayĂ© au cours de ma thĂšse de mettre au point des modĂšles prĂ©dictifs d’association protĂ©ine-ligand pour un grand nombre de cibles, valider des mĂ©thodes de criblage virtuel rĂ©centes Ă  des fins de profilage mais aussi Ă©tablir un protocole de profilage automatisĂ©, qui dĂ©cide du choix de la mĂ©thode de criblage la plus adaptĂ©e en s’appuyant sur les propriĂ©tĂ©s physico-chimiques du ligand Ă  profiler et de l’éventuelle cible.Chemoinformatics and bioinformatics methods are now necessary in every drug discovery program. Pharmaceutical industries dedicate more than 10% of their research and development investment in computer aided drug design (Kapetanovic 2008). The emergence of these tools can be explained by the increasing availability of high performance calculating machines and also by the low cost of in silico analysis compared to in vitro tests.Biological tests that were performed over last decades are now a valuable source of information and a lot of databases are trying to list them. This huge amount of information led to the birth of a new research field called “chemogenomics”. The latter is focusing on the identification of all possible associations between all possible molecules and all possible targets. Thus, using chemogenomics approaches, one can obtain a biological profile of a molecule and even anticipate possible side effects.This thesis was focused on the development of approaches that aim to predict the binding of molecules to targets. In our lab, we focus on profiling molecular databases in order to get their full biological profile. Thus, my main work was related to this context and I tried to develop predictive models to assess the binding of ligands to proteins, to validate some virtual screening methods for profiling purpose, and finally, I developed an automatic hybrid profiling workflow that selects the best fitted virtual screening approach to use according the ligand/target context

    Développement de nouvelles méthodes de criblage in silico en chémogénomique

    No full text
    La chémoinformatique et la bioinformatique sont des disciplines devenues indispensables à la découverte de médicaments. De nos jours, les industries pharmaceutiques consacrent prÚs de 10% de leur budget de recherche et développement, à la recherche de médicaments assisté par ordinateur (Kapetanovic 2008). Cette émergence peut s expliquer à la fois par le développement des architectures de calculs mais aussi par le faible coup qu engendrent des analyses in silico par rapport à des tests in-vitro.Les essais biologiques qui ont été menés depuis des décennies afin d identifier des médicaments potentiels, commencent à former une source trÚs importante de données et plusieurs bases de données commencent à les répertorier. La disponibilité de ce type de données a favorisé le développement d un nouvel axe de recherche appelé la "chémogénomique" et qui s intéresse à l étude et à l identification des associations possibles entre plusieurs molécules et plusieurs cibles. Ainsi, la chémogénomique permet de déterminer le profil biologique d une molécule et nous renseigne sur sa capacité à devenir une touche intéressante mais aussi à identifier ses possibles effets indésirables. Des méthodes de chémoinformatique permettent d utiliser ces sources de données à des fins d apprentissage et établir des modÚles prédictifs qui permettront par la suite de faire des prédictions pour connaitre l activité d une molécule.Cette thÚse a porté sur le développement et l'utilisation de méthodes de prédictions d association protéine-ligand. La prédiction d une association est importante en vue d un criblage virtuel et peut s effectuer à l aide de plusieurs méthodes. Au sein du laboratoire, on s intéresse plus particuliÚrement au profilage de bases de données de molécules (chimiothÚques) contre une série de cibles afin d établir leur profil biologique. J ai donc essayé au cours de ma thÚse de mettre au point des modÚles prédictifs d association protéine-ligand pour un grand nombre de cibles, valider des méthodes de criblage virtuel récentes à des fins de profilage mais aussi établir un protocole de profilage automatisé, qui décide du choix de la méthode de criblage la plus adaptée en s appuyant sur les propriétés physico-chimiques du ligand à profiler et de l éventuelle cible.Chemoinformatics and bioinformatics methods are now necessary in every drug discovery program. Pharmaceutical industries dedicate more than 10% of their research and development investment in computer aided drug design (Kapetanovic 2008). The emergence of these tools can be explained by the increasing availability of high performance calculating machines and also by the low cost of in silico analysis compared to in vitro tests.Biological tests that were performed over last decades are now a valuable source of information and a lot of databases are trying to list them. This huge amount of information led to the birth of a new research field called chemogenomics . The latter is focusing on the identification of all possible associations between all possible molecules and all possible targets. Thus, using chemogenomics approaches, one can obtain a biological profile of a molecule and even anticipate possible side effects.This thesis was focused on the development of approaches that aim to predict the binding of molecules to targets. In our lab, we focus on profiling molecular databases in order to get their full biological profile. Thus, my main work was related to this context and I tried to develop predictive models to assess the binding of ligands to proteins, to validate some virtual screening methods for profiling purpose, and finally, I developed an automatic hybrid profiling workflow that selects the best fitted virtual screening approach to use according the ligand/target context.STRASBOURG-Bib.electronique 063 (674829902) / SudocSudocFranceF

    sc-PDB: a database for identifying variations and multiplicity of 'druggable' binding sites in proteins.

    No full text
    International audienceBACKGROUND: The sc-PDB database is an annotated archive of druggable binding sites extracted from the Protein Data Bank. It contains all-atoms coordinates for 8166 protein-ligand complexes, chosen for their geometrical and physico-chemical properties. The sc-PDB provides a functional annotation for proteins, a chemical description for ligands and the detailed intermolecular interactions for complexes. The sc-PDB now includes a hierarchical classification of all the binding sites within a functional class. METHOD: The sc-PDB entries were first clustered according to the protein name indifferent of the species. For each cluster, we identified dissimilar sites (e.g. catalytic and allosteric sites of an enzyme). SCOPE AND APPLICATIONS: The classification of sc-PDB targets by binding site diversity was intended to facilitate chemogenomics approaches to drug design. In ligand-based approaches, it avoids comparing ligands that do not share the same binding site. In structure-based approaches, it permits to quantitatively evaluate the diversity of the binding site definition (variations in size, sequence and/or structure). AVAILABILITY: The sc-PDB database is freely available at: http://bioinfo-pharma.u-strasbg.fr/scPDB

    sc-PDB: a database for identifying variations and multiplicity of 'druggable' binding sites in proteins.

    No full text
    International audienceBACKGROUND: The sc-PDB database is an annotated archive of druggable binding sites extracted from the Protein Data Bank. It contains all-atoms coordinates for 8166 protein-ligand complexes, chosen for their geometrical and physico-chemical properties. The sc-PDB provides a functional annotation for proteins, a chemical description for ligands and the detailed intermolecular interactions for complexes. The sc-PDB now includes a hierarchical classification of all the binding sites within a functional class. METHOD: The sc-PDB entries were first clustered according to the protein name indifferent of the species. For each cluster, we identified dissimilar sites (e.g. catalytic and allosteric sites of an enzyme). SCOPE AND APPLICATIONS: The classification of sc-PDB targets by binding site diversity was intended to facilitate chemogenomics approaches to drug design. In ligand-based approaches, it avoids comparing ligands that do not share the same binding site. In structure-based approaches, it permits to quantitatively evaluate the diversity of the binding site definition (variations in size, sequence and/or structure). AVAILABILITY: The sc-PDB database is freely available at: http://bioinfo-pharma.u-strasbg.fr/scPDB
    • 

    corecore