4 research outputs found
Ordered Assembly of the Adhesive and Electrochemical Connections within Newly Formed Intercalated Disks in Primary Cultures of Adult Rat Cardiomyocytes
The intercalated disk (ID) is a complex structure that electromechanically couples adjoining cardiac myocytes into a functional syncitium. The integrity of the disk is essential for normal cardiac function, but how the diverse elements are assembled into a fully integrated structure is not well understood. In this study, we examined the assembly of new IDs in primary cultures of adult rat cardiac myocytes. From 2 to 5 days after dissociation, the cells flatten and spread, establishing new cell-cell contacts in a manner that recapitulates the in vivo processes that occur during heart development and myocardial remodeling. As cells make contact with their neighbors, transmembrane adhesion proteins localize along the line of apposition, concentrating at the sites of membrane attachment of the terminal sarcomeres. Cx43 gap junctions and ankyrin-G, an essential cytoskeletal component of voltage gated sodium channel complexes, were secondarily recruited to membrane domains involved in cell-cell contacts. The consistent order of the assembly process suggests that there are specific scaffolding requirements for integration of the mechanical and electrochemical elements of the disk. Defining the relationships that are the foundation of disk assembly has important implications for understanding the mechanical dysfunction and cardiac arrhythmias that accompany alterations of ID architecture
Regulation of Legionella Phagosome Maturation and Infection through Flagellin and Host Ipaf
International audienceLegionella pneumophila is an intracellular bacterium that causes an acute form of pneumonia called Legionnaires' disease. After infection of human macrophages, the Legionella-containing phagosome (LCP) avoids fusion with the lysosome allowing intracellular replication of the bacterium. In macrophages derived from most mouse strains, the LCP is delivered to the lysosome resulting in Legionella degradation and restricted bacterial growth. Mouse macrophages lacking the NLR protein Ipaf or its downstream effector caspase-1 are permissive to intracellular Legionella replication. However, the mechanism by which Ipaf restricts Legionella replication is not well understood. Here we demonstrate that the presence of flagellin and a competent type IV secretion system are critical for Legionella to activate caspase-1 in macrophages. Activation of caspase-1 in response to Legionella infection also required host Ipaf, but not TLR5. In the absence of Ipaf or caspase-1 activation, the LCP acquired endoplasmic reticulum-derived vesicles, avoided fusion with the lysosome, and allowed Legionella replication. Accordingly a Legionella mutant lacking flagellin did not activate caspase-1, avoided degradation, and replicated in wild-type macrophages. The regulation of phagosome maturation by Ipaf occurred within 2 h after infection and was independent of macrophage cell death. In vivo studies confirmed that flagellin and Ipaf play an important role in the control of Legionella clearance. These results reveal that Ipaf restricts Legionella replication through the regulation of phagosome maturation, providing a novel function for NLR proteins in host defense against an intracellular bacterium