30 research outputs found

    Lower-limb lengths and angles in children older than six years: Reliability and reference values by EOS® stereoradiography

    Get PDF
    Lower-limb alignment in children is classically assessed clinically or based on conventional radiography, which is associated with projection bias. Low-dose biplanar radiography was described recently as an alternative to conventional imaging. The primary objective of this study was to assess the reliability of length and angle values inferred from 3D reconstructions in children seen in everyday practice. The secondary objective was to obtain reference values for goniometry parameters in children. The paediatric reliability study was done in 18 volunteers who were divided into three groups based on whether they were typically developing (TD) children, had skeletal development abnormalities, or had cerebral palsy. The reference data were obtained in 129 TD children. Each study participant underwent biplanar radiography with 3D reconstruction performed by experts and radiology technicians. Goniometry parameters were computed automatically. Reproducibility was assessed based on the intra-class coefficient (ICC) and the ISO 5725 standard (standard deviation of reproducibility, SDR). For length parameters, the ICCs ranged from 0.94 to 1.00 and the SDR from 2.1 to 3.5 mm. For angle parameters, the ICC and SDR ranges were 0.60–0.95 and 0.9°–4.6°, respectively. No significant differences were found across experts or radiology technicians. Age-specific reference data are reported. These findings confirm the reliability of low-dose biplanar radiography for assessing lower-limb parameters in children seen in clinical practice. In addition, the study provides reference data for commonly measured parameters

    Subset- and tissue-defined STAT5 thresholds control homeostasis and function of innate lymphoid cells

    Get PDF
    Innate lymphoid cells (ILCs) patrol environmental interfaces to defend against infection and protect barrier integrity. Using a genetic tuning model, we demonstrate that the signal-dependent transcription factor (TF) STAT5 is critical for accumulation of all known ILC subsets in mice and reveal a hierarchy of STAT5 dependency for populating lymphoid and nonlymphoid tissues. We apply transcriptome and genomic distribution analyses to define a STAT5 gene signature in natural killer (NK) cells, the prototypical ILC subset, and provide a systems-based molecular rationale for its key functions downstream of IL-15. We also uncover surprising features of STAT5 behavior, most notably the wholesale redistribution that occurs when NK cells shift from tonic signaling to acute cytokine-driven signaling, and genome-wide coordination with T-bet, another key TF in ILC biology. Collectively, our data position STAT5 as a central node in the TF network that instructs ILC development, homeostasis, and function and provide mechanistic insights on how it works at cellular and molecular levels

    Convergent Evidence from Mouse and Human Studies Suggests the Involvement of Zinc Finger Protein 326 Gene in Antidepressant Treatment Response

    Get PDF
    OBJECTIVES: The forced swim test (FST) is a commonly used model to predict antidepressant efficacy. Uncovering the genetic basis of the model may unravel the mechanism of antidepressant treatment. METHODS: FVB/NJ (FVB) and C57BL/6J (B6) were first identified as the response and non-response strains to fluoxetine (a serotonin-specific reuptake inhibitor antidepressant) treatment in the mouse FST. Simple-interval (SIM) and composite-interval (CIM) mappings were applied to map the quantitative trait loci (QTLs) of the anti-immobility effect of fluoxetine in FST (FST(FLX)) in 865 male B6Ă—FVB-F2 mice. The brain mRNA expressions of the gene with the maximum QTL-linkage signal for FST(FLX) after the FST were compared between B6 and FVB mice and also compared between fluoxetine and saline treatment. The association of the variants in the human homologue of the mouse FST(FLX)-QTL gene with major depressive disorder (MDD) and antidepressant response were investigated in 1080 human subjects (MDD/control = 582/498). RESULTS: One linkage signal for FST(FLX)-QTL was detected at an intronic SNP (rs6215396) of the mouse Zfp326 gene (maximal CIM-LOD = 9.36). The Zfp326 mRNA expression in the FVB thalamus was significantly down-regulated by fluoxetine in the FST, and the higher FVB-to-B6 Zfp326 mRNA expressions in the frontal cortex, striatum and hypothalamus diminished after fluoxetine treatment. Two coding-synonymous SNPs (rs2816881 and rs10922744) in the human homologue of Zfp326, ZNF326, were significantly associated with the 8-week antidepressant treatment response in the MDD patients (Bonferroni-corrected p = 0.004-0.028). CONCLUSIONS: The findings suggest the involvement of the Zfp326 and ZNF326 genes in antidepressant treatment response

    A systematic review showing the lack of diagnostic criteria and tools developed for lower-limb cellulitis

    Get PDF
    BACKGROUND: Cellulitis can be a difficult diagnosis to make. Furthermore, 31% of patients admitted from the emergency department with suspected lower-limb cellulitis have been misdiagnosed, with incorrect treatment potentially resulting in avoidable hospital admission and the prescription of unnecessary antibiotics. OBJECTIVES: We sought to identify diagnostic criteria or tools that have been developed for lower-limb cellulitis. METHODS: We conducted a systematic review using Ovid MEDLINE and Embase databases in May 2018, with the aim of describing diagnostic criteria and tools developed for lower-limb cellulitis, and we assessed the quality of the studies identified using the Quality Assessment of Diagnostic Accuracy Studies-2 tool. We included all types of study that described diagnostic criteria or tools. RESULTS: Eight observational studies were included. Five studies examined biochemical markers, two studies assessed imaging and one study developed a diagnostic decision model. All eight studies were considered to have a high risk for bias in at least one domain. The quantity and quality of available data was low and results could not be pooled owing to the heterogeneity of the findings. CONCLUSIONS: There is a lack of high-quality publications describing criteria or tools for diagnosing lower-limb cellulitis. Future studies using prospective designs, validated in both primary and secondary care settings, are needed. What's already known about this topic? Diagnosing lower-limb cellulitis on first presentation is challenging. Approximately one in three patients admitted from the emergency department with suspected lower-limb cellulitis do not have cellulitis and are given another diagnosis on discharge. Consequently, this results in potentially avoidable hospital admissions and the prescription of unnecessary antibiotics. There are no diagnostic criteria available for lower-limb cellulitis in the U.K. What does this study add? This systematic review has identified a key research gap in the diagnosis of lower-limb cellulitis. There is a current lack of robustly developed and validated diagnostic criteria or tools for use in clinical practice

    Energy dependent chest wall thickness equations for male lung monitoring with germanium detectors

    No full text
    The thickness and fat fraction of the chest wall are important parameters for in vivo lung monitoring. They have been measured from ultrasonic images on 374 male workers of the French nuclear industry using four measurement locations, as dictated by the size and position of the germanium detectors used for monitoring. The plastic muscle equivalent chest wall thickness (PMECWT) and the plastic 50% muscle-50% adipose equivalent chest wall thickness (X 5050) have been calculated for each worker at 17, 59.5, and 185.7 keV, respectively. Multi-linear regression models have been tested to predict PMECWT and X5050 as a function of anthropometric measurements. Finally, it was considered whether the average chest wall thickness could be used instead of the material equivalent chest wall thickness. It was found that the mean chest wall thickness was (27 ± 5) mm and the mean fat fraction was (25 ± 8)%. The best and more convenient model for material equivalent chest wall thickness is a linear function of the body mass index. Depending on the energy, the standard errors of estimate for this model range between 3.2-3.4 mm for PMECWT and between 3.2-3.7 mm for X5050. At 59.5 and 185.7 keV, it was determined, to an excellent approximation, that the fat fraction and consideration of an equivalent material are unnecessary, contrary to the case at 17 keV. Copyright © 2014 Health Physics Society
    corecore