87 research outputs found

    DACH1 as a multifaceted and potentially druggable susceptibility factor for kidney disease

    No full text
    Kidney diseases affect more than 15% of adults in the US, yet drug development in the kidney field, when compared with that for other common diseases, has been lagging behind. Modifiers that increase the susceptibility to injury and contribute to the pathogenesis and progression of kidney disease include genetic and environmental factors and epigenetic mechanisms. In this issue of the JCI, Cao et al. and Doke et al. independently report the identification of a susceptibility factor called Dachshund homolog 1 (DACH1). Both groups identify an association of reduced DACH1 expression with kidney disease, using different screening approaches, studying different types of human kidney diseases, and using different experimental models, making the fact that both stumbled over the same protein very compelling. Combined, these studies highlight DACH1 as a key safeguard in the kidney, granting various cell types proper function by modulating several molecular pathways

    Podocyte Pathology and Nephropathy – Sphingolipids in Glomerular Diseases

    Get PDF
    Sphingolipids are components of the lipid rafts in plasma membranes, which are important for proper function of podocytes, a key element of the glomerular filtration barrier. Research revealed an essential role of sphingolipids and sphingolipid metabolites in glomerular disorders of genetic and non-genetic origin. The discovery that glucocerebrosides accumulate in Gaucher disease in glomerular cells and are associated with clinical proteinuria initiated intensive research into the function of other sphingolipids in glomerular disorders. The accumulation of sphingolipids in other genetic diseases including Tay–Sachs, Sandhoff, Fabry, hereditary inclusion body myopathy 2, Niemann–Pick, and nephrotic syndrome of the Finnish type and its implications with respect to glomerular pathology will be discussed. Similarly, sphingolipid accumulation occurs in glomerular diseases of non-genetic origin including diabetic kidney disease (DKD), HIV-associated nephropathy, focal segmental glomerulosclerosis (FSGS), and lupus nephritis. Sphingomyelin metabolites, such as ceramide, sphingosine, and sphingosine-1-phosphate have also gained tremendous interest. We recently described that sphingomyelin phosphodiesterase acid-like 3b (SMPDL3b) is expressed in podocytes where it modulates acid sphingomyelinase activity and acts as a master modulator of danger signaling. Decreased SMPDL3b expression in post-reperfusion kidney biopsies from transplant recipients with idiopathic FSGS correlates with the recurrence of proteinuria in patients and in experimental models of xenotransplantation. Increased SMPDL3b expression is associated with DKD. The consequences of differential SMPDL3b expression in podocytes in these diseases with respect to their pathogenesis will be discussed. Finally, the role of sphingolipids in the formation of lipid rafts in podocytes and their contribution to the maintenance of a functional slit diaphragm in the glomerulus will be discussed
    corecore