612 research outputs found
Gene-flow between populations of cotton bollworm Helicoverpa armigera (Lepidoptera: Noctuidae) is highly variable between years
Both large and small scale migrations of Helicoverpa armigera Hübner in Australia were investigated using AMOVA analysis and genetic assignment tests. Five microsatellite loci were screened across 3142 individuals from 16 localities in eight major cotton and grain growing regions within Australia, over a 38-month period (November 1999 to January 2003). From November 1999 to March 2001 relatively low levels of migration were characterized between growing regions. Substantially higher than average gene-flow rates and limited differentiation between cropping regions characterized the period from April 2001 to March 2002. A reduced migration rate in the year from April 2002 to March 2003 resulted in significant genetic structuring between cropping regions. This differentiation was established within two or three generations. Genetic drift alone is unlikely to drive genetic differentiation over such a small number of generations, unless it is accompanied by extreme bottlenecks and/or selection. Helicoverpa armigera in Australia demonstrated isolation by distance, so immigration into cropping regions is more likely to come from nearby regions than from afar. This effect was most pronounced in years with limited migration. However, there is evidence of long distance dispersal events in periods of high migration (April 2001–March 2002). The implications of highly variable migration patterns for resistance management are considered.K.D. Scott, K.S. Wilkinson, N. Lawrence, C.L. Lange, L.J. Scott, M.A. Merritt, A.J. Lowe and G.C Graha
Measurement and modelling of moisture—electrical resistivity relationship of fine-grained unsaturated soils and electrical anisotropy
A methodology for developing resistivity-moisture content relationships of materials associated with a clayey landslide is presented. Key elements of the methodology include sample selection and preparation, laboratory measurement of resistivity with changing moisture content, and the derivation of models describing the relationship between resistivity and moisture content.
Laboratory resistivity measurements show that the techniques utilised (samples and square array) have considerable potential as a means of electropetrophysical calibration of engineering soils and weak rock. Experimental electrical resistivity results show a hierarchy of values dependent on sample lithology, with silty clay exhibiting the lowest resistivities, followed by siltstones and sands, which return the highest resistivities. In addition, finer grained samples show a greater degree of anisotropy between measurement orientations than coarser grained samples.
However, suitability of results in light of issues such as sample cracking and electrical conduction must be identified and accounted for if the results are to be accurately up-scaled to inverted model resistivity results. The existence of directional anisotropy makes model calibration curve selection more difficult due to variability in the range of measured laboratory resistances.
The use of larger measurement array size means that experimental data will be more representative of bulk lithological properties. In addition, use of electrodes with a relatively high surface area (wide diameter) help maintain low contact resistances and repeat measurement error, relative to narrow electrodes.
Variation exists between the fit of experimental data and petrophysical models. Model fit is best for clay-dominated samples but fits less well for sand-dominated samples. Waxman–Smits equation is appropriately applied in this investigation as all samples have considerable clay mineral content, as is shown in non-negligible CEC results. The incorporation of pressure plate suction measurements on samples, allows suction dissipation to be quantified and evaluated alongside moisture content and electrical resistivity
3D ground model development for an active landslide in Lias mudrocks using geophysical, remote sensing and geotechnical methods
A ground model of an active and complex landslide system in instability prone Lias mudrocks of North Yorkshire, UK is developed through an integrated approach, utilising geophysical, geotechnical and remote sensing investigative methods. Surface geomorphology is mapped and interpreted using immersive 3D visualisation software to interpret airborne light detection and ranging data and aerial photographs. Subsurface structure is determined by core logging and 3D electrical resistivity tomography (ERT), which is deployed at two scales of resolution to provide a means of volumetrically characterising the subsurface expression of both site scale (tens of metres) geological structure, and finer (metre to sub-metre) scale earth-flow related structures. Petrophysical analysis of the borehole core samples is used to develop relationships between the electrical and physical formation properties, to aid calibration and interpretation of 3D ERT images. Results of the landslide investigation reveal that an integrated approach centred on volumetric geophysical imaging successfully achieves a detailed understanding of structure and lithology of a complex landslide system, which cannot be achieved through the use of remotely sensed data or discrete intrusive sampling alone
Geology of the Abu Dhabi 1:100 000 map sheet, 100-16, United Arab Emirates
This Sheet Description describes the Quaternary and solid geology of the Abu Dhabi 1:100 000 scale geological map. The Abu Dhabi district covers 3620 km2 along the Arabian Gulf coast including the northern part of Saadiyat island, Abu Dhabi, part of the Mussafah district and many of the islands to the west. These include Futaisi, Bu Kesheishah, Halat al Bharaini, Al Dabiya, Bu Qumah, Bu Shara, Al Qanatir and Al Rafiq. The sheet also includes a significant part of the coastal plain southwest of Abu Dhabi between Shunayyin in the east to Borquat al Rashid in the west, and south to Maharqah, across which the main E11 coastal highway runs. In the southeast of the district, an area of higher ground is formed of Miocene rocks draped by a variable sequence of cemented and unconsolidated dune sand. The region hosts several major oilfields including the Rumaitha, Shanayel, Al Dabb’iya, Umm al Dalkh, Al Mutarib and Umm al Lulu fields.
The region is dominated by a series of offshore islands, part of a chain of barrier islands that extend from north of Abu Dhabi to Marawah Island, west of the present area. These islands, along with the sea-ward margin of the coastal plain are mostly comprised of a thin sequence of intensively studied Holocene marine carbonates termed the Abu Dhabi Formation. These sediments represent a transgressive-regressive sequence, and form the classic carbonate-evaporitic ‘sabkhas’ for which the region is justly famous. The Abu Dhabi Formation includes a range of marine and supratidal facies including coastal spits, bars and beach ridges, lagoonal muds, algal mats and ooidal tidal deltas deposited over the last 10 000 years. The southern limit of the Holocene transgression is marked by a beach ridge running parallel to the coast and clearly visible on satellite imagery.
The barrier islands commonly have a core of well-cemented Pleistocene carbonate dune sand (Ghayathi Formation) around which the carbonate spits, bars and ridges of the Abu Dhabi Formation were accreted. The islands have been largely deflated down to the local water-table leading to the development of extensive sabkhas. Consequently, the islands are generally flat but punctuated by small Ghayathi Formation mesas and zeugen, forming mushroom-shaped outcrops rising up to 6 m above sea-level, locally capped with marine limestones of the Late Pleistocene Fuwayrit Formation. Offshore to the north of the island, below low water, is the Great Pearl Bank, an area of reefs and coralgal sands named after the former pearling industry in the region.
South of the Holocene beach ridge, much of the onshore area is an extensive, very gently sloping coastal plain, dominated by a deflated planation surface developed on either unconsolidated quartzose aeolian sand or well cemented carbonate grainstones of the Ghayathi Formation. The deflation surface is commonly marked by secondary gypsum forming a sabkha. The Ghayathi Formation palaeodunes are locally well exposed, forming spectacular wind-sculpted mesas and zeugen both on the islands and within the lagoons, but also onshore draping the Miocene rocks in the southeast of the district
A Precise Measurement of the Weak Mixing Angle in Neutrino-Nucleon Scattering
We report a precise measurement of the weak mixing angle from the ratio of
neutral current to charged current inclusive cross-sections in deep-inelastic
neutrino-nucleon scattering. The data were gathered at the CCFR neutrino
detector in the Fermilab quadrupole-triplet neutrino beam, with neutrino
energies up to 600 GeV. Using the on-shell definition, , we obtain .Comment: 10 pages, Nevis Preprint #1498 (Submitted to Phys. Rev. Lett.
Anisotropic distribution functions for spherical galaxies
A method is presented for finding anisotropic distribution functions for
stellar systems with known, spherically symmetric, densities, which depends
only on the two classical integrals of the energy and the magnitude of the
angular momentum. It requires the density to be expressed as a sum of products
of functions of the potential and of the radial coordinate. The solution
corresponding to this type of density is in turn a sum of products of functions
of the energy and of the magnitude of the angular momentum. The products of the
density and its radial and transverse velocity dispersions can be also
expressed as a sum of products of functions of the potential and of the radial
coordinate. Several examples are given, including some of new anisotropic
distribution functions. This device can be extended further to the related
problem of finding two-integral distribution functions for axisymmetric
galaxies.Comment: 5 figure
Cell adhesion molecules nectins and associating proteins: Implications for physiology and pathology
Nectins have recently been identified as new cell adhesion molecules (CAMs) consisting of four members. They show immunoglobulin-like structures and exclusively localize at adherens junctions (AJs) between two neighboring cells. During the formation of cell–cell junctions, nectins function in cooperation with or independently of cadherins, major CAMs at AJs. Similar to cadherins, which are linked to the actin cytoskeleton by binding to catenins, nectins also bind to afadin through their C-terminal region and are linked to the actin cytoskeleton. In addition to nectins, there are nectin-like molecules (Necls), which resemble nectins in their structures and consist of five members. Nectins and Necls are involved in the formation of various kinds of cell–cell adhesion, and also play key roles in diverse cellular functions including cell movement, proliferation, survival, and differentiation. Thus, nectins and Necls are crucial for physiology and pathology of multicellular organisms
Extrapolating SMBH correlations down the mass scale: the case for IMBHs in globular clusters
Empirical evidence for both stellar mass black holes M_bh<10^2 M_sun) and
supermassive black holes (SMBHs, M_bh>10^5 M_sun) is well established.
Moreover, every galaxy with a bulge appears to host a SMBH, whose mass is
correlated with the bulge mass, and even more strongly with the central stellar
velocity dispersion sigma_c, the `M-sigma' relation. On the other hand,
evidence for "intermediate-mass" black holes (IMBHs, with masses in the range
1^2 - 10^5 M_sun) is relatively sparse, with only a few mass measurements
reported in globular clusters (GCs), dwarf galaxies and low-mass AGNs. We
explore the question of whether globular clusters extend the M-sigma
relationship for galaxies to lower black hole masses and find that available
data for globular clusters are consistent with the extrapolation of this
relationship. We use this extrapolated M-sigma relationship to predict the
putative black hole masses of those globular clusters where existence of
central IMBH was proposed. We discuss how globular clusters can be used as a
constraint on theories making specific predictions for the low-mass end of the
M-sigma relation.Comment: 14 pages, 3 figures, accepted for publication in Astrophysics and
Space Science; fixed typos and a quote in Sec.
Formation and Evolution of Supermassive Black Holes
The correlation between the mass of supermassive black holes in galaxy nuclei
and the mass of the galaxy spheroids or bulges (or more precisely their central
velocity dispersion), suggests a common formation scenario for galaxies and
their central black holes. The growth of bulges and black holes can commonly
proceed through external gas accretion or hierarchical mergers, and are both
related to starbursts. Internal dynamical processes control and regulate the
rate of mass accretion. Self-regulation and feedback are the key of the
correlation. It is possible that the growth of one component, either BH or
bulge, takes over, breaking the correlation, as in Narrow Line Seyfert 1
objects. The formation of supermassive black holes can begin early in the
universe, from the collapse of Population III, and then through gas accretion.
The active black holes can then play a significant role in the re-ionization of
the universe. The nuclear activity is now frequently invoked as a feedback to
star formation in galaxies, and even more spectacularly in cooling flows. The
growth of SMBH is certainly there self-regulated. SMBHs perturb their local
environment, and the mergers of binary SMBHs help to heat and destroy central
stellar cusps. The interpretation of the X-ray background yields important
constraints on the history of AGN activity and obscuration, and the census of
AGN at low and at high redshifts reveals the downsizing effect, already
observed for star formation. History appears quite different for bright QSO and
low-luminosity AGN: the first grow rapidly at high z, and their number density
decreases then sharply, while the density of low-luminosity objects peaks more
recently, and then decreases smoothly.Comment: 31 pages, 13 figures, review paper for Astrophysics Update
- …