2,461 research outputs found
The Different Environmental Dependencies of Star-formation for Giant and Dwarf Galaxies
We examine the origins of the bimodality observed in the global properties of
galaxies around a stellar mass of 3x10^10 M_sun by comparing the environmental
dependencies of star-formation for the giant and dwarf galaxy populations. The
Sloan Digital Sky Survey DR4 spectroscopic dataset is used to produce a sample
of galaxies in the vicinity of the supercluster centered on the cluster A2199
at z=0.03 that is ~90% complete to a magnitude limit of M*+3.3. From these we
measure global trends with environment for both giant (M_r<-20 mag) and dwarf
(-19<M_r<-17.8 mag) subsamples using the luminosity-weighted mean stellar age
and H_alpha emission as independent measures of star-formation history. The
fraction of giant galaxies classed as old (t>7 Gyr) or passive (EW[H_alpha]<4
A) falls gradually from ~80% in the cluster cores to ~40% in field regions
beyond 3-4 R_virial, as found in previous studies. In contrast, we find that
the dwarf galaxy population shows a sharp transition at ~1 R_virial, from being
predominantly old/passive within the cluster, to outside where virtually all
galaxies are forming stars and old/passive galaxies are only found as
satellites to more massive galaxies. These results imply fundamental
differences in the evolution of giant and dwarf galaxies: whereas the
star-formation histories of giant galaxies are determined primarily by their
merger history, star-formation in dwarf galaxies is much more resilient to the
effects of major mergers. Instead dwarf galaxies become passive only once they
become satellites within a more massive halo, by losing their halo gas
reservoir to the host halo, or through other environment-related processes such
as galaxy harassment and/or ram-pressure stripping.Comment: 4 pages, 4 figures, accepted for publication in ApJ
Structure and Evolution of Galaxy Clusters: Internal Dynamics of ABCG 209 at z~0.21
We study the internal dynamics of the rich galaxy cluster ABGC 209 on the
basis of new spectroscopic and photometric data. The distribution in redshift
shows that ABCG 209 is a well isolated peak of 112 detected member galaxies at
z=0.209, characterised by a high value of the line-of-sight velocity
dispersion, sigma_v=1250-1400 Km/s, on the whole observed area (1 Mpc/h from
the cluster center), that leads to a virial mass of M=1.6-2.2x10^15 M_sun
within the virial radius, assuming the dynamical equilibrium. The presence of a
velocity gradient in the velocity field, the elongation in the spatial
distribution of the colour-selected likely cluster members, the elongation of
the X-ray contour levels in the Chandra image, and the elongation of cD galaxy
show that ABCG 209 is characterised by a preferential NW-SE direction. We also
find a significant deviation of the velocity distribution from a Gaussian, and
relevant evidence of substructure and dynamical segregation. All these facts
show that ABCG 209 is a strongly evolving cluster, possibly in an advanced
phase of merging.Comment: 26 pages, 14 figures. A&A in pres
Photometric redshifts for Quasars in multi band Surveys
MLPQNA stands for Multi Layer Perceptron with Quasi Newton Algorithm and it
is a machine learning method which can be used to cope with regression and
classification problems on complex and massive data sets. In this paper we give
the formal description of the method and present the results of its application
to the evaluation of photometric redshifts for quasars. The data set used for
the experiment was obtained by merging four different surveys (SDSS, GALEX,
UKIDSS and WISE), thus covering a wide range of wavelengths from the UV to the
mid-infrared. The method is able i) to achieve a very high accuracy; ii) to
drastically reduce the number of outliers and catastrophic objects; iii) to
discriminate among parameters (or features) on the basis of their significance,
so that the number of features used for training and analysis can be optimized
in order to reduce both the computational demands and the effects of
degeneracy. The best experiment, which makes use of a selected combination of
parameters drawn from the four surveys, leads, in terms of DeltaZnorm (i.e.
(zspec-zphot)/(1+zspec)), to an average of DeltaZnorm = 0.004, a standard
deviation sigma = 0.069 and a Median Absolute Deviation MAD = 0.02 over the
whole redshift range (i.e. zspec <= 3.6), defined by the 4-survey cross-matched
spectroscopic sample. The fraction of catastrophic outliers, i.e. of objects
with photo-z deviating more than 2sigma from the spectroscopic value is < 3%,
leading to a sigma = 0.035 after their removal, over the same redshift range.
The method is made available to the community through the DAMEWARE web
application.Comment: 38 pages, Submitted to ApJ in February 2013; Accepted by ApJ in May
201
Recommended from our members
Search for lepton flavour violation in the eÎŒ continuum with the ATLAS detector in âs = 7 TeV pp collisions at the LHC
This paper presents a search for the t-channel exchange of an R-parity violating scalar top quark (t) in the e^± ÎŒ^â continuum using 2.1 fb^(â1) of data collected by the ATLAS detector in âs = 7 TeV pp collisions at the Large Hadron Collider. Data are found to be consistent with the expectation from the Standard Model backgrounds. Limits on R-parity-violating couplings at 95 % C.L. are calculated as a function of the scalar top mass (mt). The upper limits on the production cross section for pp â eÎŒX, through the t-channel exchange of a scalar top quark, ranges from 170 fb for m_t=95 GeV to 30 fb for m_t=1000 GeV
Recommended from our members
A search for tt resonances with the ATLAS detector in 2.05 fb^(â1) of proton-proton collisions at âs =7 TeV
A search for top quark pair resonances in final states containing at least one electron or muon has been performed with the ATLAS experiment at the CERN Large Hadron Collider. The search uses a data sample corresponding to an integrated luminosity of 2.05 fb^(â1), which was recorded in 2011 at a proton-proton centre-of-mass energy of 7 TeV. No evidence for a resonance is found and limits are set on the production cross-section times branching ratio to tt for narrow and wide resonances. For narrow ZâČ bosons, the observed 95 % Bayesian credibility level limits range from 9.3 pb to 0.95 pb for masses in the range of m_(ZâČ)=500 GeV to m_(ZâČ)=1300 GeV. The corresponding excluded mass region for a leptophobic topcolour ZâČ boson (Kaluza-Klein gluon excitation in the Randall-Sundrum model) is m_(ZâČ)<880 GeV (m_(gKK)< 1130 GeV)
Numerical simulations challenged on the prediction of massive subhalo abundance in galaxy clusters: the case of Abell 2142
In this Letter we compare the abundance of member galaxies of a rich, nearby
() galaxy cluster, Abell 2142, with that of halos of comparable virial
mass extracted from sets of state-of-the-art numerical simulations, both
collisionless at different resolutions and with the inclusion of baryonic
physics in the form of cooling, star formation, and feedback by active galactic
nuclei. We also use two semi-analytical models to account for the presence of
orphan galaxies. The photometric and spectroscopic information, taken from the
Sloan Digital Sky Survey Data Release 12 (SDSS DR12) database, allows us to
estimate the stellar velocity dispersion of member galaxies of Abell 2142. This
quantity is used as proxy for the total mass of secure cluster members and is
properly compared with that of subhalos in simulations. We find that simulated
halos have a statistically significant ( sigma confidence level)
smaller amount of massive (circular velocity above )
subhalos, even before accounting for the possible incompleteness of
observations. These results corroborate the findings from a recent strong
lensing study of the Hubble Frontier Fields galaxy cluster MACS J0416
\citep{grillo2015} and suggest that the observed difference is already present
at the level of dark matter (DM) subhalos and is not solved by introducing
baryonic physics. A deeper understanding of this discrepancy between
observations and simulations will provide valuable insights into the impact of
the physical properties of DM particles and the effect of baryons on the
formation and evolution of cosmological structures.Comment: 8 pages, 2 figures. Modified to match the version published in ApJ
Egg numbers and fecundity traits in nine species of Mantella poison frogs from arid grasslands and rainforests of Madagascar (Anura: Mantellidae)
The body size and number of eggs in dissected females were
analysed in nine species of the Malagasy frog genus Mantella
basing upon preserved specimens. These species were distinguished in terms of habitat and grouped as âgrassland
speciesâ (included M. betsileo, M. expectata, M. viridis), and ârainforest speciesâ (M. baroni, M. crocea, M. cowani, M. laevigata, M. nigricans, M. pulchra). The species with the lowest egg - number was M. cowani with a mean egg number of 37 ± 15, while the species with the highest egg-number was M. viridis with 115 ± 21 eggs. In general, the grassland species are characterised by a higher number of relatively small eggs. Moreover, their fecundity was positively and significantly correlated to female body size. Rainforest species were smaller in size and with a lower number of eggs. We interpreted these differences as possible consequences of habitat adaptations. Among the studied species, the Critically Endangered Mantella cowani is also featured by a low number and large size of eggs. This is likely correlated with the high elevation site of the central highlands where this species occurs
ACCESS - V. Dissecting ram-pressure stripping through integral-field spectroscopy and multi-band imaging
We study the case of a bright (L>L*) barred spiral galaxy from the rich
cluster A3558 in the Shapley supercluster core (z=0.05) undergoing ram-pressure
stripping. Integral-field spectroscopy, complemented by multi-band imaging,
allows us to reveal the impact of ram pressure on the interstellar medium. We
study in detail the kinematics and the physical conditions of the ionized gas
and the properties of the stellar populations. We observe one-sided extraplanar
ionized gas along the full extent of the galaxy disc. Narrow-band Halpha
imaging resolves this outflow into a complex of knots and filaments. The gas
velocity field is complex with the extraplanar gas showing signature of
rotation. In all parts of the galaxy, we find a significant contribution from
shock excitation, as well as emission powered by star formation. Shock-ionized
gas is associated with the turbulent gas outflow and highly attenuated by dust.
All these findings cover the whole phenomenology of early-stage ram-pressure
stripping. Intense, highly obscured star formation is taking place in the
nucleus, probably related to the bar, and in a region 12 kpc South-West from
the centre. In the SW region we identify a starburst characterized by a 5x
increase in the star-formation rate over the last ~100 Myr, possibly related to
the compression of the interstellar gas by the ram pressure. The scenario
suggested by the observations is supported and refined by ad hoc
N-body/hydrodynamical simulations which identify a rather narrow temporal range
for the onset of ram-pressure stripping around t~60 Myr ago, and an angle
between the galaxy rotation axis and the intra-cluster medium wind of ~45 deg.
Taking into account that the galaxy is found ~1 Mpc from the cluster centre in
a relatively low-density region, this study shows that ram-pressure stripping
still acts efficiently on massive galaxies well outside the cluster cores.Comment: 46 pages, 21 figures, accepted for publication; MNRAS 201
- âŠ