2,519 research outputs found
Natural zeolites and white wines from Campania region (Southern Italy): a new contribution for solving some oenological problems
The purpose of this research is to provide a new mixture of Campanian zeolitized tuffs for solving two specific problems in the production of white wines: the protein and tartaric stability. In fact, a very frequent cause of turbidity and formation of organic deposits in white wines is the occurrence of thermolabile and thermostable proteins colloidal suspensions which precipitate in time, especially in summertime and during the storage and transport. Normally, to mitigate this risk wine producers use organic and inorganic stabilizers and clarifiers. The best known treatment, recognized also by the International Organisation of Vine and Wine (OIV) foresees the use of bentonite with a montmorillonite content not lower than 80%. The present paper aims at evaluating the use of two high zeolite grade Italian volcanoclastites such as the Neapolitan Yellow Tuff (NYT) and the Yellow Facies of the Campanian Ignimbrite (YFCI), in the treatment of three peculiar white wines of the Campanian region (Southern Italy): Falanghina, Fiano di Avellino and Greco di Tufo. Granulates were produced starting from tuff blocks as provided by quarries. Some grain size fractions have been prepared to investigate the zeolite content (phillipsite + chabazite + analcime) by X-ray diffraction (XRD). A 2-5 mm grain size fraction was chosen for NYT and a 5-10 mm for YFCI. Three Campanian monocultivar white wines were used for the test: the Falanghina 2006 vintage, the Fiano di Avellino DOCG 2007 vintage, and the Greco di Tufo DOCG 2008 vintage. 48 samples with mixture of the zeolitized tuffs, 1 sample with mixture of a synthetic zeolite A and 1 sample with mixture of a commercial sodium activated bentonite were prepared. ICP-OES analysis for the determination of ECEC, Ion Chromatography (IC) analyses for the determination of some major cations and Turbidimetric tests for the definition of the protein stabilization process before and after treatments were also carried out. It was evidenced that high zeolitized tuff/wine ratios enable the protein stabilization whereas a significant decrease of potassium ion after the treatment with a zeolite-rich powder improves the tartaric stability, a serious problem in all the wine productions. The results of these tests refer to a laboratory scale research. A transfer of the experiment to a pilot plant scale is in progress
The Different Environmental Dependencies of Star-formation for Giant and Dwarf Galaxies
We examine the origins of the bimodality observed in the global properties of
galaxies around a stellar mass of 3x10^10 M_sun by comparing the environmental
dependencies of star-formation for the giant and dwarf galaxy populations. The
Sloan Digital Sky Survey DR4 spectroscopic dataset is used to produce a sample
of galaxies in the vicinity of the supercluster centered on the cluster A2199
at z=0.03 that is ~90% complete to a magnitude limit of M*+3.3. From these we
measure global trends with environment for both giant (M_r<-20 mag) and dwarf
(-19<M_r<-17.8 mag) subsamples using the luminosity-weighted mean stellar age
and H_alpha emission as independent measures of star-formation history. The
fraction of giant galaxies classed as old (t>7 Gyr) or passive (EW[H_alpha]<4
A) falls gradually from ~80% in the cluster cores to ~40% in field regions
beyond 3-4 R_virial, as found in previous studies. In contrast, we find that
the dwarf galaxy population shows a sharp transition at ~1 R_virial, from being
predominantly old/passive within the cluster, to outside where virtually all
galaxies are forming stars and old/passive galaxies are only found as
satellites to more massive galaxies. These results imply fundamental
differences in the evolution of giant and dwarf galaxies: whereas the
star-formation histories of giant galaxies are determined primarily by their
merger history, star-formation in dwarf galaxies is much more resilient to the
effects of major mergers. Instead dwarf galaxies become passive only once they
become satellites within a more massive halo, by losing their halo gas
reservoir to the host halo, or through other environment-related processes such
as galaxy harassment and/or ram-pressure stripping.Comment: 4 pages, 4 figures, accepted for publication in ApJ
Weak Lensing Mass Reconstruction of the Galaxy Cluster Abell 209
Weak lensing applied to deep optical images of clusters of galaxies provides
a powerful tool to reconstruct the distribution of the gravitating mass
associated to these structures. We use the shear signal extracted by an
analysis of deep exposures of a region centered around the galaxy cluster Abell
209, at redshift z=0.2, to derive both a map of the projected mass distribution
and an estimate of the total mass within a characteristic radius. We use a
series of deep archival R-band images from CFHT-12k, covering an area of 0.3
deg^2. We determine the shear of background galaxy images using a new
implementation of the modified Kaiser-Squires-Broadhurst pipeline for shear
determination, which we has been tested against the ``Shear TEsting Program 1
and 2'' simulations. We use mass aperture statistics to produce maps of the 2
dimensional density distribution, and parametric fits using both
Navarro-Frenk-White (NFW) and singular-isothermal-sphere profiles to constrain
the total mass. The projected mass distribution shows a pronounced asymmetry,
with an elongated structure extending from the SE to the NW. This is in general
agreement with the optical distribution previously found by other authors. A
similar elongation was previously detected in the X-ray emission map, and in
the distribution of galaxy colours. The circular NFW mass profile fit gives a
total mass of M_{200} = 7.7^{+4.3}_{-2.7} 10^{14} solar masses inside the
virial radius r_{200} = 1.8\pm 0.3 Mpc. The weak lensing profile reinforces the
evidence for an elongated structure of Abell 209, as previously suggested by
studies of the galaxy distribution and velocities.Comment: accepted by A&A, 15 pages, 11 figure
Numerical simulations challenged on the prediction of massive subhalo abundance in galaxy clusters: the case of Abell 2142
In this Letter we compare the abundance of member galaxies of a rich, nearby
() galaxy cluster, Abell 2142, with that of halos of comparable virial
mass extracted from sets of state-of-the-art numerical simulations, both
collisionless at different resolutions and with the inclusion of baryonic
physics in the form of cooling, star formation, and feedback by active galactic
nuclei. We also use two semi-analytical models to account for the presence of
orphan galaxies. The photometric and spectroscopic information, taken from the
Sloan Digital Sky Survey Data Release 12 (SDSS DR12) database, allows us to
estimate the stellar velocity dispersion of member galaxies of Abell 2142. This
quantity is used as proxy for the total mass of secure cluster members and is
properly compared with that of subhalos in simulations. We find that simulated
halos have a statistically significant ( sigma confidence level)
smaller amount of massive (circular velocity above )
subhalos, even before accounting for the possible incompleteness of
observations. These results corroborate the findings from a recent strong
lensing study of the Hubble Frontier Fields galaxy cluster MACS J0416
\citep{grillo2015} and suggest that the observed difference is already present
at the level of dark matter (DM) subhalos and is not solved by introducing
baryonic physics. A deeper understanding of this discrepancy between
observations and simulations will provide valuable insights into the impact of
the physical properties of DM particles and the effect of baryons on the
formation and evolution of cosmological structures.Comment: 8 pages, 2 figures. Modified to match the version published in ApJ
ACCESS - V. Dissecting ram-pressure stripping through integral-field spectroscopy and multi-band imaging
We study the case of a bright (L>L*) barred spiral galaxy from the rich
cluster A3558 in the Shapley supercluster core (z=0.05) undergoing ram-pressure
stripping. Integral-field spectroscopy, complemented by multi-band imaging,
allows us to reveal the impact of ram pressure on the interstellar medium. We
study in detail the kinematics and the physical conditions of the ionized gas
and the properties of the stellar populations. We observe one-sided extraplanar
ionized gas along the full extent of the galaxy disc. Narrow-band Halpha
imaging resolves this outflow into a complex of knots and filaments. The gas
velocity field is complex with the extraplanar gas showing signature of
rotation. In all parts of the galaxy, we find a significant contribution from
shock excitation, as well as emission powered by star formation. Shock-ionized
gas is associated with the turbulent gas outflow and highly attenuated by dust.
All these findings cover the whole phenomenology of early-stage ram-pressure
stripping. Intense, highly obscured star formation is taking place in the
nucleus, probably related to the bar, and in a region 12 kpc South-West from
the centre. In the SW region we identify a starburst characterized by a 5x
increase in the star-formation rate over the last ~100 Myr, possibly related to
the compression of the interstellar gas by the ram pressure. The scenario
suggested by the observations is supported and refined by ad hoc
N-body/hydrodynamical simulations which identify a rather narrow temporal range
for the onset of ram-pressure stripping around t~60 Myr ago, and an angle
between the galaxy rotation axis and the intra-cluster medium wind of ~45 deg.
Taking into account that the galaxy is found ~1 Mpc from the cluster centre in
a relatively low-density region, this study shows that ram-pressure stripping
still acts efficiently on massive galaxies well outside the cluster cores.Comment: 46 pages, 21 figures, accepted for publication; MNRAS 201
CLASH-VLT: Strangulation of cluster galaxies in MACSJ0416.1-2403 as seen from their chemical enrichment
(abridged) We explore the Frontier Fields cluster MACS J0416.1-2403 at
z=0.3972 with VIMOS/VLT spectroscopy from the CLASH-VLT survey covering a
region which corresponds to almost three virial radii. We measure fluxes of 5
emission lines of 76 cluster members enabling us to unambiguously derive O/H
gas metallicities, and also SFRs from Halpha. For intermediate massses we find
a similar distribution of cluster and field galaxies in the MZR and mass vs.
sSFR diagrams. Bulge-dominated cluster galaxies have on average lower sSFRs and
higher O/Hs compared to their disk-dominated counterparts. We use the location
of galaxies in the projected velocity vs. position phase-space to separate our
cluster sample into a region of objects accreted longer time ago and a region
of recently accreted and infalling galaxies. We find a higher fraction of
accreted metal-rich galaxies (63%) compared to the fraction of 28% of
metal-rich galaxies in the infalling regions. Intermediate mass galaxies
falling into the cluster for the first time are found to be in agreement with
predictions of the fundamental metallicity relation. In contrast, for already
accreted star-forming galaxies of similar masses, we find on average
metallicities higher than predicted by the models. This trend is intensified
for accreted cluster galaxies of the lowest mass bin, that display
metallicities 2-3 times higher than predicted by models with primordial gas
inflow. Environmental effects therefore strongly influence gas regulations and
control gas metallicities of log(M/Msun)<10.2 (Salpeter IMF) cluster galaxies.
We also investigate chemical evolutionary paths of model galaxies with and
without inflow of gas showing that strangulation is needed to explain the
higher metallicities of accreted cluster galaxies. Our results favor a
strangulation scenario in which gas inflow stops for log(M/Msun)<10.2 galaxies
when accreted by the cluster.Comment: Version better matched to the published version, including table with
observed and derived quantities for the 76 cluster galaxie
Discovery of a faint, star-forming, multiply lensed, Lyman-alpha blob
We report the discovery of a multiply lensed Lyman- blob (LAB) behind
the galaxy cluster AS1063 using the Multi Unit Spectroscopic Explorer (MUSE) on
the Very Large Telescope (VLT). The background source is at 3.117 and is
intrinsically faint compared to almost all previously reported LABs. We used
our highly precise strong lensing model to reconstruct the source properties,
and we find an intrinsic luminosity of =
erg s, extending to 33 kpc. We find that the LAB is associated with a
group of galaxies, and possibly a protocluster, in agreement with previous
studies that find LABs in overdensities. In addition to Lyman-
(Ly) emission, we find \ion{C}{IV}, \ion{He}{II}, and \ion{O}{III}]
ultraviolet (UV) emission lines arising from the centre of the nebula. We used
the compactness of these lines in combination with the line ratios to conclude
that the \Lya nebula is likely powered by embedded star formation. Resonant
scattering of the \Lya photons then produces the extended shape of the
emission. Thanks to the combined power of MUSE and strong gravitational
lensing, we are now able to probe the circumgalatic medium of sub-
galaxies at .Comment: 7 pages, 7 figures; moderate changes to match the accepted A&A
versoi
Connective-tissue growth factor modulates WNT signalling and interacts with the WNT receptor complex
Connective-tissue growth factor (CTGF) is a member of the CCN family of secreted proteins. CCN family members contain four characteristic domains and exhibit multiple activities: they associate with the extracellular matrix, they can mediate cell adhesion, cell migration and chemotaxis, and they can modulate the activities of peptide growth factors. Many of the effects of CTGF are thought to be mediated by binding to integrins, whereas others may be because of its recently identified ability to interact with BMP4 and TGF?. We demonstrate, using Xenopus embryos, that CTGF also regulates signalling through the Wnt pathway, in accord with its ability to bind to the Wnt co-receptor LDL receptor-related protein 6 (LRP6). This interaction is likely to occur through the C-terminal (CT) domain of CTGF, which is distinct from the BMP- and TGF?-interacting domain. Our results define new activities of CTGF and add to the variety of routes through which cells regulate growth factor activity in development, disease and tissue homeostasis
Massive Star cluster formation under the microscope at z=6
We report on a superdense star-forming region with an effective radius (R_e)
smaller than 13 pc identified at z=6.143 and showing a star-formation rate
density \Sigma_SFR~1000 Msun/yr/kpc2 (or conservatively >300 Msun/yr/kpc2).
Such a dense region is detected with S/N>40 hosted by a dwarf extending over
440 pc, dubbed D1 (Vanzella et al. 2017b). D1 is magnified by a factor
17.4+/-5.0 behind the Hubble Frontier Field galaxy cluster MACS~J0416 and
elongated tangentially by a factor 13.2+/-4.0 (including the systematic
errors). The lens model accurately reproduces the positions of the confirmed
multiple images with a r.m.s. of 0.35", and the tangential stretch is well
depicted by a giant multiply-imaged Lya arc. D1 is part of an interacting
star-forming complex extending over 800 pc. The SED-fitting, the very blue
ultraviolet slope (\beta ~ -2.5, F(\lambda) ~ \lambda^\beta) and the prominent
Lya emission of the stellar complex imply that very young (< 10-100 Myr),
moderately dust-attenuated (E(B-V)<0.15) stellar populations are present and
organised in dense subcomponents. We argue that D1 (with a stellar mass of 2 x
10^7 Msun) might contain a young massive star cluster of M < 10^6 Msun and
Muv~-15.6 (or m_uv=31.1), confined within a region of 13 pc, and not dissimilar
from some local super star clusters (SSCs). The ultraviolet appearance of D1 is
also consistent with a simulated local dwarf hosting a SSC placed at z=6 and
lensed back to the observer. This compact system fits into some popular
globular cluster formation scenarios. We show that future high spatial
resolution imaging (e.g., E-ELT/MAORY-MICADO and VLT/MAVIS) will allow us to
spatially resolve light profiles of 2-8 pc.Comment: 21 pages, 14 figures, 1 table, MNRAS accepte
A highly-ionized region surrounding SN Refsdal revealed by MUSE
Supernova (SN) Refsdal is the first multiply-imaged, highly-magnified, and
spatially-resolved SN ever observed. The SN exploded in a highly-magnified
spiral galaxy at z=1.49 behind the Frontier Fields Cluster MACS1149, and
provides a unique opportunity to study the environment of SNe at high z. We
exploit the time delay between multiple images to determine the properties of
the SN and its environment, before, during, and after the SN exploded. We use
the integral-field spectrograph MUSE on the VLT to simultaneously target all
observed and model-predicted positions of SN Refsdal. We find MgII emission at
all positions of SN Refsdal, accompanied by weak FeII* emission at two
positions. The measured ratios of [OII] to MgII emission of 10-20 indicate a
high degree of ionization with low metallicity. Because the same high degree of
ionization is found in all images, and our spatial resolution is too coarse to
resolve the region of influence of SN Refsdal, we conclude that this high
degree of ionization has been produced by previous SNe or a young and hot
stellar population. We find no variability of the [OII] line over a period of
57 days. This suggests that there is no variation in the [OII] luminosity of
the SN over this period, or that the SN has a small contribution to the
integrated [OII] emission over the scale resolved by our observations.Comment: 5 pages, 4 figures, accepted for publication in A&
- …