26 research outputs found

    Regulation of 5-aminolevulinate synthase mRNA in different rat tissues

    No full text
    cDNA clones for rat liver 5-aminolevulinate synthase have been isolated and used to examine mRNA levels in different rat tissues. Northern hybridization analysis of total RNA from various rat tissues showed the presence of a single 5-aminolevulinate synthase mRNA species of estimated length 2.3 kilobases. Primer extension and RNase mapping studies indicated that the mRNA is identical in all tissues. Highest basal levels were seen in liver and heart. Administration of hemin to rats reduced the basal level of this mRNA only in liver but the heme precursor, 5-aminolevulinate (or its methyl ester), repressed the basal levels in liver, kidney, heart, testis, and brain. The drug 2-allyl-2-isopropylacetamide increased the mRNA level in liver and kidney only while human chorionic gonadotropin hormone elevated the level in testis. Administration of the heme precursor 5-aminolevulinate prevented these inductions. Nuclear transcriptional run-off experiments in liver cell nuclei showed that 2-allyl-2-isopropylacetamide and 5-aminolevulinate exert their effect by altering the rate of transcription of the 5-aminolevulinate synthase gene. The results indicate that a single 5-aminolevulinate synthase mRNA is expressed in all tissues and that its transcription is negatively regulated by heme.link_to_subscribed_fulltex

    Endosomal trafficking of the Menkes copper ATPase ATP7A is mediated by vesicles containing the Rab7 and Rab5 GTPase proteins.

    No full text
    The Cu-ATPase ATP7A (MNK) is localized in the trans-Golgi network (TGN) and relocalizes in the plasma membrane via vesicle-mediated traffic following exposure of the cells to high concentrations of copper. Rab proteins are organelle-specific GTPases, markers of different endosomal compartments; their role has been recently reviewed (Trends Cell Biol. 11(2001) 487). In this article we analyze the endosomal pathway of trafficking of the MNK protein in stably transfected clones of CHO cells, expressing chimeric Rab5-myc or Rab7-myc proteins, markers of early or late endosome compartments, respectively. We demonstrate by immunofluorescence and confocal and electron microscopy techniques that the increase in the concentration of copper in the medium (189 microM) rapidly induces a redistribution of the MNK protein from early sorting endosomes, positive for Rab5-myc protein, to late endosomes, containing the Rab7-myc protein. Cell fractionation experiments confirm these results; i.e., the MNK protein is recruited to the endosomal fraction on copper stimulation and colocalizes with Rab5 and Rab7 proteins. These findings allow the first characterization of the vesicles involved in the intracellular routing of the MNK protein from the TGN to the plasma membrane, a key mechanism allowing appropriate efflux of copper in cells grown in high concentrations of the metal
    corecore