143 research outputs found

    Assessment of soil organic matter supply: Challenges and opportunities

    Get PDF
    Soil organic matter (SOM) is recognized as an important factor for sustainable land use. Several analyzing techniques were focused on fractionation of soil organic carbon (SOC), on carbon sequestration, soil functions, or other approaches. We combined SOC fractionation with studies on carbon sequestration. Thermogravimetry (TG, recording of mass losses during heating up of soil samples) was selected as a supplemental method to standard analyzing techniques for soils. TG provides recording of thermal mass losses in dependency on temperature what facilitate fractionation together with SOM content determination via mass losses on ignition (MLI). Autocorrelation analyses of TG data enable to assess the carbon sequestration processes. After a gentle sample preparation, more than 370 soil samples in eight sample sets were analyzed from different types of soils and regions of origin. The results extend literature data by revealing quantifiable interrelations between content of SOM, SOC and clay with a coefficient of determination around 0.98. Deviations from the relationship become lower during incubation experiments, with increasing sampling depth, and with decreasing organic fertilization in plots of long term agriculture field experiments etc. We explained these results with changing quantities of extraneous (mostly fresh) organic residues not affected by soil carbon content regulation. These organic residues seems to be quantifiable via difference between measured MLI and the MLI calculated from content of SOC and clay both determined by standard methods. The practical use of found interrelation implies an acceptance of traditional definition of soil and SOM as products of long term ecosystem succession with content regulation as a unifying over regions soil feature. In contrast, the more common and simplified understanding of soil as carbon containing mineral substrates supports public recognition of soils. However, it does not facilitate the comparison of results from different regions and studies about soils. We conclude from these considerations about obligatory distinction between following types of organic carbon as an essential precondition for assessment of SOM supply: 1. SOC (or humus) as a product of long term carbon regulation processes, 2. fresh organic residues, and carbon of 3. geologic (turf, coal, graphite, diamond, …) or 4. anthropogenic origin (black carbon in ashes, cinder, soot, asphalt)

    Organic carbon content determination in soils: challenges and opportunities of elemental analysis versus thermogravimetry

    Get PDF
    Sustainable soil management needs reliable and accurate monitoring of soil organic carbon (SOC) content. However, despite of the development of analytical techniques during last decades, the detection opportunities for short term and rather small changes in SOC induced by organic fertilization, organic amendments or land use changes are still limited with the available methods. This study aims to quantify the theoretical detection opportunities for changes in SOC content with elemental analysis (EA) as the standard method in comparing with thermogravimetry (TG) as an enhanced traditional approach derived from soil organic matter determination via mass losses on ignition. The carried out experiments consist of mixing soil samples from non-fertilized plots of three long-term agricultural experiments in Bad Lauchstaedt, Großbeeren and Muencheberg (silty loam, loamy sand and silty sand) with straw, farmyard manure, sheep faeces and charcoal in four quantities (3 t×ha-1, 20 t×ha-1, 60 t×ha-1 and 180 t×ha‑1fresh matter) under laboratory conditions.The quantities were based on fresh matter application in agricultural practice accepting different amounts of added organic carbon. The results confirm EA as a method of higher reliability and accuracy for carbon content determination. TG allows to distinguish the different types of added amendments with high sensitivity. This was achieved by using newly developed evaluation algorithms for the thermal decay dynamics. We conclude from these results that TG cannot substitute EA to determine organic carbon on a routine base. However, TG could be a supplementary fingerprinting technique for the detection of added organic carbon to soils from organic fertilizers and to distinguish sources of geological or anthropogenic origin enabling a future assessment of soil organic carbon quality

    Transient versus static electron spin relaxation in Mn2+ complexes relevant as MRI contrast agents

    Get PDF
    [Abstract] The zero-field splitting (ZFS) parameters of the [Mn(EDTA)(H2O)]2–·2H2O and [Mn(MeNO2A)(H2O)]·2H2O systems were estimated by using DFT and ab initio CASSCF/NEVPT2 calculations (EDTA = 2,2′,2″,2‴-(ethane-1,2-diylbis(azanetriyl))tetraacetate; MeNO2A = 2,2′-(7-methyl-1,4,7-triazonane-1,4-diyl)diacetate). Subsequent molecular dynamics calculations performed within the atom-centered density matrix propagation (ADMP) approach provided access to the transient and static ZFS parameters, as well as to the correlation time of the transient ZFS. The calculated ZFS parameters present a reasonable agreement with the experimental values obtained from the analysis of 1H relaxation data. The correlation times calculated for the two systems investigated turned out to be very short (τc ∼ 0.02–0.05 ps), which shows that the transient ZFS is modulated by molecular vibrations. On the contrary, the static ZFS is modulated by the rotation of the complexes in solution, which for the small complexes investigated here is characterized by rotational correlation times of τR ∼ 35–60 ps. As a result, electron spin relaxation in small Mn2+complexes is dominated by the static ZFS.España. Ministerio de Economía y Competitividad; CTQ2013-43243-PEspaña. Ministerio de Economía y Competitividad; CTQ2015-71211-RED

    The legacy effect of synthetic N fertiliser

    Get PDF
    Cumulative crop recovery of synthetic fertiliser nitrogen (N) over several cropping seasons (legacy effect) generally receives limited attention. The increment in crop N uptake after the first-season uptake from fertiliser can be expressed as a fraction (∆RE) of annual N application rate. This study aims to quantify ∆RE using data from nine long-term experiments (LTEs). As such, ∆RE is the difference between first season (RE1st) and long-term (RELT) recovery of synthetic fertiliser N. In this study, RE1st was assessed either by the 15N isotope method, or by a zero-N subplot freshly superimposed on a long-term fertilised LTE treatment plot. RELT was calculated by comparing N uptake in the total aboveground crop biomass between a long-term fertilised and long-term control (zero-N) treatment. Using a mixed linear effect model, the effects of climate, crop type, experiment duration, average N rate, and soil clay content on ∆RE were evaluated. Because the experimental setup required for calculation of ∆RE is relatively rare, only nine suitable LTEs were found. Across these nine LTEs in Europe and North America, mean ∆RE was 24.4% (±12.0%, 95% CI) of annual N application, with higher values for winter wheat than for maize. This result shows that fertiliser-N retained in the soil and stubble may contribute substantially to crop N uptake in subsequent years. Our results suggest that an initial recovery of 43.8% (±11%, 95% CI) of N application may increase to around 66.0% (±15%, 95% CI) on average over time. Furthermore, we found that ∆RE was not clearly related to long-term changes in topsoil total N stock. Our findings show that the - often used - first year recovery of synthetic fertiliser N application does not express the full effect of fertiliser application on crop nutrition. The fertiliser contribution to soil N supply should be accounted for when exploring future scenarios on N cycling, including crop N requirements and N balance schemes

    Manuring and stable nitrogen isotope ratios in cereals and pulses: towards a new archaeobotanical approach to the inference of land use and dietary practices

    Get PDF
    This paper explores the impact of animal manure application on the δ15N values of a broad range of crops (cereals and pulses), under a range of manuring levels/regimes and at a series of locations extending from northwest Europe to the eastern Mediterranean. We included both agricultural field experiments and areas where ‘traditional’ farming is practised. Our aim is to ground-truth interpretation of δ15N values in archaeobotanical crop remains as evidence of past growing conditions and husbandry practices. The results confirm the potentially radical impact of manuring on δ15N values in cereals, depending on manuring level, but indicate only a slight effect on pulses, which can fix atmospheric nitrogen. The expected geographical trend towards greater δ15N with increasing climatic aridity is not apparent, probably because the growing conditions for crops are ‘buffered’ through crop management. Each of these observations has fundamental implications for archaeobotanical interpretation of δ15N values as evidence of land use practices and (together with analysis of bone collagen/tooth enamel in potential consumers) palaeodiet

    Soft systems methodology: a context within a 50-year retrospective of OR/MS

    Get PDF
    Soft systems methodology (SSM) has been used in the practice of operations research and management science OR/MS) since the early 1970s. In the 1990s, it emerged as a viable academic discipline. Unfortunately, its proponents consider SSM and traditional systems thinking to be mutually exclusive. Despite the differences claimed by SSM proponents between the two, they have been complementary. An extensive sampling of the OR/MS literature over its entire lifetime demonstrates the richness with which the non-SSM literature has been addressing the very same issues as does SSM

    Physicochemical Characterization, and Relaxometry Studies of Micro-Graphite Oxide, Graphene Nanoplatelets, and Nanoribbons

    Get PDF
    The chemistry of high-performance magnetic resonance imaging contrast agents remains an active area of research. In this work, we demonstrate that the potassium permanganate-based oxidative chemical procedures used to synthesize graphite oxide or graphene nanoparticles leads to the confinement (intercalation) of trace amounts of Mn2+ ions between the graphene sheets, and that these manganese intercalated graphitic and graphene structures show disparate structural, chemical and magnetic properties, and high relaxivity (up to 2 order) and distinctly different nuclear magnetic resonance dispersion profiles compared to paramagnetic chelate compounds. The results taken together with other published reports on confinement of paramagnetic metal ions within single-walled carbon nanotubes (a rolled up graphene sheet) show that confinement (encapsulation or intercalation) of paramagnetic metal ions within graphene sheets, and not the size, shape or architecture of the graphitic carbon particles is the key determinant for increasing relaxivity, and thus, identifies nano confinement of paramagnetic ions as novel general strategy to develop paramagnetic metal-ion graphitic-carbon complexes as high relaxivity MRI contrast agents
    corecore