467 research outputs found
An improved method for mobility prediction using a Markov model and density estimation
This is the author accepted manuscript. The final version is available from IEEE via the DOI in this recordThe prediction of an individual's future locations is a significant part of scientific researches. While a variety of solutions have been investigated for the prediction of future locations, predicting departure and arrival times at predicted locations is a task with higher complexity and less attention. While the challenges of combining spatial and temporal information have been stated in various works, the proposed solutions lack accuracy and robustness. This paper proposes a simple yet effective way to predict not only an individual's future location, but also most probable departure and arrival times as well as the most probable route from origin to destination
Identifying atypical travel patterns for improved medium-term mobility prediction
This is the author accepted manuscript. The final version is available from IEEE via the DOI in this recordDuring the last decades, concepts of Intelligent Transportation Systems (ITS) were continuously adapted and improved based on new insights into human travel behavior. Drivers for improvements are the quantity and quality of available mobility data, which increased significantly in recent years. Based on travel behavior, literature proposes a large number of different solutions for next step or future location prediction. However a holistic spatio-temporal prediction, which could further improve the quality of ITS, creates a more complex task. The prediction of medium-term mobility for one to seven days is challenging in particular for atypical travel behavior, since the weekdays’ order delivers no reliable indication for the next day’s travel behavior. With our contribution, we explore the benefits of various prediction approaches for medium-term mobility prediction and combine them dynamically to predict individual mobility behavior for a period of one week. The derived framework utilizes an exhaustive search approach to benefit from a machine learning based clustering method on location data. In conjunction with an Artificial Neural Network, the prediction framework is robust against prediction errors created by atypical behavior. With two data sets consisting of smartphone and vehicle data, we demonstrate the framework’s real-world applicability. We show that clustering an individual’s historical movement data can improve the prediction accuracy of different prediction methods that will be explained in detail and illustrate the interrelation of entropy and prediction accuracy.University of Exete
Validity of self-assessment of hallux valgus using the Manchester scale
<p>Abstract</p> <p>Background</p> <p>Hallux valgus (HV) is a common condition involving the progressive subluxation of the first metatarsophalangeal joint due to lateral deviation of the hallux and medial deviation of the first metatarsal. The objective of this study was to evaluate the re-test reliability and validity of self-assessment of HV using a simple clinical screening tool involving four standardised photographs (the Manchester scale), in order to determine whether this tool could be used for postal surveys of the condition.</p> <p>Methods</p> <p>HV was assessed with the Manchester scale in 138 people aged 65 to 93 years of age (102 women and 36 men) as part of a larger randomised controlled trial. At the six month follow-up assessment, HV was reassessed to determine re-test reliability, and participants were asked to self-assess their degree of HV independent of the examiners. Associations between (i) baseline and follow-up assessments of the examiners and (ii) participant and examiner assessments were performed using weighted kappa statistics. Analyses were then repeated after HV was dichotomised as present or absent using unweighted kappa, and sensitivity and specificity of self-assessment of HV was determined.</p> <p>Results</p> <p>Re-test reliability of the examiners was substantial to almost perfect (weighted kappa = 0.78 to 0.90), and there was a substantial level of agreement between observations of the participants and the examiners (weighted kappa = 0.71 to 0.80). Overall, there was a slight tendency for participants to rate their HV as less severe than the examiners. When the Manchester scale scores were dichotomised, agreement was substantial to almost perfect for both re-test comparisons (kappa = 0.80 to 0.89) and substantial for comparisons between participants and examiners (kappa = 0.64 to 0.76). The sensitivity and specificity of self-assessment of HV using the dichotomous scale were 85 and 88%, respectively.</p> <p>Conclusions</p> <p>The Manchester scale demonstrates high re-test reliability, and self-assessment scores obtained by participants are strongly associated with scores obtained by examiners. These findings indicate that the tool can be used with confidence in postal surveys to document the presence and severity of HV.</p> <p>Trial registration</p> <p>ACTRN12608000065392</p
Uncertainty in the measurement of indoor temperature and humidity in naturally ventilated dairy buildings as influenced by measurement technique and data variability
[EN] The microclimatic conditions in dairy buildings affect animal welfare and gaseous emissions. Measurements are highly variable due to the inhomogeneous distribution of heat and humidity sources (related to farm management) and the turbulent inflow (associated with meteorologic boundary conditions). The selection of the measurement strategy (number and position of the sensors) and the analysis methodology adds to the uncertainty of the applied measurement technique.
To assess the suitability of different sensor positions, in situations where monitoring in the direct vicinity of the animals is not possible, we collected long-term data in two naturally ventilated dairy barns in Germany between March 2015 and April 2016 (horizontal and vertical profiles with 10 to 5 min temporal resolution). Uncertainties related to the measurement setup were assessed by comparing the device outputs under lab conditions after the on-farm experiments.
We found out that the uncertainty in measurements of relative humidity is of particular importance when assessing heat stress risk and resulting economic losses in terms of temperature-humidity index. Measurements at a height of approximately 3 m-3.5 m turned out to be a good approximation for the microclimatic conditions in the animal occupied zone (including the air volume close to the emission active zone). However, further investigation along this cross-section is required to reduce uncertainties related to the inhomogeneous distribution of humidity. In addition, a regular sound cleaning (and if possible recalibration after few months) of the measurement devices is crucial to reduce the instrumentation uncertainty in long-term monitoring of relative humidity in dairy barns (C) 2017 The Authors. Published by Elsevier Ltd on behalf of IAgrE.The work was financially supported by the German Federal Ministry of Food and Agriculture (BMEL) through the Federal Office for Agriculture and Food (BLE), grant number 2814ERA02C.Hempel, S.; König, M.; Menz, C.; Janke, D.; Amon, B.; Banhazi, T.; Estellés, F.... (2018). Uncertainty in the measurement of indoor temperature and humidity in naturally ventilated dairy buildings as influenced by measurement technique and data variability. Biosystems Engineering. 166:58-75. https://doi.org/10.1016/j.biosystemseng.2017.11.004S587516
Transference Principles for Log-Sobolev and Spectral-Gap with Applications to Conservative Spin Systems
We obtain new principles for transferring log-Sobolev and Spectral-Gap
inequalities from a source metric-measure space to a target one, when the
curvature of the target space is bounded from below. As our main application,
we obtain explicit estimates for the log-Sobolev and Spectral-Gap constants of
various conservative spin system models, consisting of non-interacting and
weakly-interacting particles, constrained to conserve the mean-spin. When the
self-interaction is a perturbation of a strongly convex potential, this
partially recovers and partially extends previous results of Caputo,
Chafa\"{\i}, Grunewald, Landim, Lu, Menz, Otto, Panizo, Villani, Westdickenberg
and Yau. When the self-interaction is only assumed to be (non-strongly) convex,
as in the case of the two-sided exponential measure, we obtain sharp estimates
on the system's spectral-gap as a function of the mean-spin, independently of
the size of the system.Comment: 57 page
The imaging properties of the Gas Pixel Detector as a focal plane polarimeter
X-rays are particularly suited to probe the physics of extreme objects.
However, despite the enormous improvements of X-ray Astronomy in imaging,
spectroscopy and timing, polarimetry remains largely unexplored. We propose the
photoelectric polarimeter Gas Pixel Detector (GPD) as an instrument candidate
to fill the gap of more than thirty years of lack of measurements. The GPD, in
the focus of a telescope, will increase the sensitivity of orders of magnitude.
Moreover, since it can measure the energy, the position, the arrival time and
the polarization angle of every single photon, allows to perform polarimetry of
subsets of data singled out from the spectrum, the light curve or the image of
source. The GPD has an intrinsic very fine imaging capability and in this work
we report on the calibration campaign carried out in 2012 at the PANTER X-ray
test facility of the Max-Planck-Institut f\"ur extraterrestrische Physik of
Garching (Germany) in which, for the first time, we coupled it to a JET-X
optics module with a focal length of 3.5 m and an angular resolution of 18
arcsec at 4.5 keV. This configuration was proposed in 2012 aboard the X-ray
Imaging Polarimetry Explorer (XIPE) in response to the ESA call for a small
mission. We derived the imaging and polarimetric performance for extended
sources like Pulsar Wind Nebulae and Supernova Remnants as case studies for the
XIPE configuration, discussing also possible improvements by coupling the
detector with advanced optics, having finer angular resolution and larger
effective area, to study with more details extended objects.Comment: Accepted for publication in The Astrophysical Journal Supplemen
Efficacy of a multifaceted podiatry intervention to improve balance and prevent falls in older people: study protocol for a randomised trial
<p>Abstract</p> <p>Background</p> <p>Falls in older people are a major public health problem, with at least one in three people aged over 65 years falling each year. There is increasing evidence that foot problems and inappropriate footwear increase the risk of falls, however no studies have been undertaken to determine whether modifying these risk factors decreases the risk of falling. This article describes the design of a randomised trial to evaluate the efficacy of a multifaceted podiatry intervention to reduce foot pain, improve balance, and reduce falls in older people.</p> <p>Methods</p> <p>Three hundred community-dwelling men and women aged 65 years and over with current foot pain and an increased risk of falling will be randomly allocated to a control or intervention group. The "usual cae" control group will receive routine podiatry (i.e. nail care and callus debridement). The intervention group will receive usual care plus a multifaceted podiatry intervention consisting of: (i) prefabricated insoles customised to accommodate plantar lesions; (ii) footwear advice and assistance with the purchase of new footwear if current footwear is inappropriate; (iii) a home-based exercise program to strengthen foot and ankle muscles; and (iv) a falls prevention education booklet. Primary outcome measures will be the number of fallers, number of multiple fallers and the falls rate recorded by a falls diary over a 12 month period. Secondary outcome measures assessed six months after baseline will include the Medical Outcomes Study Short Form 12 (SF-12), the Manchester Foot Pain and Disability Index, the Falls Efficacy Scale International, and a series of balance and functional tests. Data will be analysed using the intention to treat principle.</p> <p>Discussion</p> <p>This study is the first randomised trial to evaluate the efficacy of podiatry in improving balance and preventing falls. The trial has been pragmatically designed to ensure that the findings can be generalised to clinical practice. If found to be effective, the multifaceted podiatry intervention will be a unique addition to common falls prevention strategies already in use.</p> <p>Trial registration</p> <p>Australian New Zealand Clinical Trials Registry: ACTRN12608000065392</p
A rasch analysis of the Manchester foot pain and disability index
© 2009 Muller and Roddy; licensee BioMed Central Ltd
- …