157 research outputs found
Light controlled magnetoresistance and magnetic field controlled photoresistance in CoFe film deposited on BiFeO3
We present a magnetoresistive-photoresistive device based on the interaction
of a piezomagnetic CoFe thin film with a photostrictive BiFeO3 substrate that
undergoes light-induced strain. The magnitude of the resistance and
magnetoresistance in the CoFe film can be controlled by the wavelength of the
incident light on the BiFeO3. Moreover, a light-induced decrease in anisotropic
magnetoresistance is detected due to an additional magnetoelastic contribution
to magnetic anisotropy of the CoFe film. This effect may find applications in
photo-sensing systems, wavelength detectors and can possibly open a research
development in light-controlled magnetic switching properties for next
generation magnetoresistive memory devices.Comment: 5 pages, 4 figures, journal pape
Dust in dwarf galaxies: The case of NGC 4214
We have carried out a detailed modelling of the dust heating and emission in
the nearby, starbursting dwarf galaxy NGC 4214. Due to its proximity and the
great wealth of data from the UV to the millimeter range (from GALEX, HST, {\it
Spitzer}, Herschel, Planck and IRAM) it is possible to separately model the
emission from HII regions and their associated photodissociation regions (PDRs)
and the emission from diffuse dust. Furthermore, most model parameters can be
directly determined from the data leaving very few free parameters. We can fit
both the emission from HII+PDR regions and the diffuse emission in NGC 4214
with these models with "normal" dust properties and realistic parameters.Comment: 4pages, 3 figures. To appear in 'The Spectral Energy Distribution of
Galaxies' Proceedings IAU Symposium No 284, 201
Plasma Panel Sensors for Particle and Beam Detection
The plasma panel sensor (PPS) is an inherently digital, high gain, novel
variant of micropattern gas detectors inspired by many operational and
fabrication principles common to plasma display panels (PDPs). The PPS is
comprised of a dense array of small, plasma discharge, gas cells within a
hermetically-sealed glass panel, and is assembled from non-reactive,
intrinsically radiation-hard materials such as glass substrates, metal
electrodes and mostly inert gas mixtures. We are developing the technology to
fabricate these devices with very low mass and small thickness, using gas gaps
of at least a few hundred micrometers. Our tests with these devices demonstrate
a spatial resolution of about 1 mm. We intend to make PPS devices with much
smaller cells and the potential for much finer position resolutions. Our PPS
tests also show response times of several nanoseconds. We report here our
results in detecting betas, cosmic-ray muons, and our first proton beam tests.Comment: 2012 IEEE NS
Development of a plasma panel radiation detector: recent progress and key issues
A radiation detector based on plasma display panel technology, which is the
principal component of plasma television displays is presented. Plasma Panel
Sensor (PPS) technology is a variant of micropattern gas radiation detectors.
The PPS is conceived as an array of sealed plasma discharge gas cells which can
be used for fast response (O(5ns) per pixel), high spatial resolution detection
(pixel pitch can be less than 100 micrometer) of ionizing and minimum ionizing
particles. The PPS is assembled from non-reactive, intrinsically radiation-hard
materials: glass substrates, metal electrodes and inert gas mixtures. We report
on the PPS development program, including simulations and design and the first
laboratory studies which demonstrate the usage of plasma display panels in
measurements of cosmic ray muons, as well as the expansion of experimental
results on the detection of betas from radioactive sources.Comment: presented at IEEE NSS 2011 (Barcelona
Submillimeter mapping and analysis of cold dust condensations in the Orion M42 star forming complex
We present here the continuum submillimeter maps of the molecular cloud
around the M42 Nebula in the Orion region. These have been obtained in four
wavelength bands (200, 260, 360 and 580 microns) with the ProNaOS two meter
balloon-borne telescope. The area covered is 7 parsecs wide (50 arcmin at a
distance of 470 pc) with a spatial resolution of about 0.4 parsec. Thanks to
the high sensitivity to faint surface brightness gradients, we have found
several cold condensations with temperatures ranging from 12 to 17 K, within 3
parsecs of the dense ridge. The statistical analysis of the temperature and
spectral index spatial distribution shows an evidence of an inverse correlation
between these two parameters. Being invisible in the IRAS 100 micron survey,
some cold clouds are likely to be the seeds for future star formation activity
going on in the complex. We estimate their masses and we show that two of them
have masses higher than their Jeans masses, and may be gravitationally
unstable.Comment: 4 figures, The Astrophysical Journal, Main Journal, in pres
Investigation of the thermal stability of Mg/Co periodic multilayers for EUV applications
We present the results of the characterization of Mg/Co periodic multilayers
and their thermal stability for the EUV range. The annealing study is performed
up to a temperature of 400\degree C. Images obtained by scanning transmission
electron microscopy and electron energy loss spectroscopy clearly show the good
quality of the multilayer structure. The measurements of the EUV reflectivity
around 25 nm (~49 eV) indicate that the reflectivity decreases when the
annealing temperature increases above 300\degreeC. X-ray emission spectroscopy
is performed to determine the chemical state of the Mg atoms within the Mg/Co
multilayer. Nuclear magnetic resonance used to determine the chemical state of
the Co atoms and scanning electron microscopy images of cross sections of the
Mg/Co multilayers reveal changes in the morphology of the stack from an
annealing temperature of 305\degreee;C. This explains the observed reflectivity
loss.Comment: Published in Applied Physics A: Materials Science \& Processing
Published at
http://www.springerlink.com.chimie.gate.inist.fr/content/6v396j6m56771r61/ 21
page
Pharmacists Are Not Mid-Level Providers
Pharmacists should not be classified as âmid-levelâ providers. This classification implies that there are different levels or a hierarchy of providers when in fact each health care provider brings unique and essential knowledge and contributions to the health care team and to the care of patients. Pharmacists are no exception. Timely issues germane to pharmacists, including dependent and independent practice, provider status, and professional identity, contribute to the rationale that pharmacists, just like all other health care providers, should be classified by their professional identity. While use of the term mid-level provider to identify various practitioners may not seem consequential, in todayâs health care environment, words do matter when it comes to attributing value, and the contributions of all health care providers should be recognized as equally important to the patient care team
Chemical Ordering in Bimetallic FeCo Nanoparticles: From a Direct Chemical Synthesis to Application As Efficient High-Frequency Magnetic Material
Single-crystalline FeCo nanoparticles with tunable size and shape were prepared by co-decomposing two metal-amide precursors under mild conditions. The nature of the ligands introduced in this organometallic synthesis drastically affects the reactivity of the precursors and, thus, the chemical distribution within the nanoparticles. The presence of the B2 short-range order was evidenced in FeCo nanoparticles prepared in the presence of HDAHCl ligands, combining 57 Fe Mössbauer, zero-field 59 Co ferromagnetic nuclear resonance (FNR), and X-ray diffraction studies. This is the first time that the B2 structure is directly formed during synthesis without the need of any annealing step. The as-prepared nanoparticles exhibit magnetic properties comparable with the ones for the bulk (M s = 226 Am 2 ·kg -1 ). Composite magnetic materials prepared from these FeCo nanoparticles led to a successful proof-of-concept of the integration on inductor-based filters (27% enhancement of the inductance value at 100 MHz)
Far-infrared and molecular line observations of Lynds 183 - studies of cold gas and dust
We have mapped the dark cloud L183 in the far-infrared at 100um and 200um
with the ISOPHOT photometer aboard the ISO satellite. The observations make it
possible for the first time to study the properties of the large dust grains in
L183 without confusion from smaller grains. The observations show clear colour
temperature variations which are likely to be caused by changes in the emission
properties of the dust particles. In the cloud core the far-infrared colour
temperature drops below 12K. The data allow a new determination of the cloud
mass and the mass distribution. The mass within a radius of 10 arcmin from the
cloud centre is 25 Msun. We have mapped the cloud in several molecular lines
including DCO+(2-1) and H13CO+(1-0). These species are believed to be tracers
of cold and dense molecular material and we detect a strong anticorrelation
between the DCO+ emission and the dust colour temperatures. In particular, the
DCO+(2-1) emission is not detected towards the maximum of the 100um emission
where the colour temperature rises above 15K. The H13CO+ emission follows the
DCO+ distribution but CO isotopes show strong emission even towards the 100um
peak. A comparison of the DCO+ and C18O maps shows sharp variations in the
relative intensities of the species. Morphologically the 200um dust emission
traces the distribution of dense molecular material as seen e.g. in C18O lines.
A comparison with dust column density shows that C18O is depleted by a factor
of 1.5 in the cloud core. We present results of R- and B-band starcounts. The
extinction is much better correlated with the 200um than with the 100um
emission. Based on the 200um correlation at low extinction values we deduce a
value of ~17mag for the visual extinction towards the cloud centre.Comment: to be published in A&
- âŠ