28 research outputs found
Clinical symptoms, signs and tests for identification of impending and current water-loss dehydration in older people (Review)
BackgroundThere is evidence that water-loss dehydration is common in older people and associated with many causes of morbidity and mortality.However, it is unclear what clinical symptoms, signs and tests may be used to identify early dehydration in older people, so that support can be mobilised to improve hydration before health and well-being are compromised.ObjectivesTo determine the diagnostic accuracy of state (one time), minimally invasive clinical symptoms, signs and tests to be used as screeningtests for detecting water-loss dehydration in older people by systematically reviewing studies that have measured a reference standard and at least one index test in people aged 65 years and over. Water-loss dehydration was defined primarily as including everyone with either impending or current water-loss dehydration (including all those with serum osmolality ≥ 295 mOsm/kg as being dehydrated).Search methodsStructured search strategies were developed for MEDLINE (OvidSP), EMBASE (OvidSP), CINAHL, LILACS, DARE and HTAdatabases (The Cochrane Library), and the International Clinical Trials Registry Platform (ICTRP). Reference lists of included studiesand identified relevant reviews were checked. Authors of included studies were contacted for details of further studies.Selection criteriaTitles and abstracts were scanned and all potentially relevant studies obtained in full text. Inclusion of full text studies was assessed independently in duplicate, and disagreements resolved by a third author. We wrote to authors of all studies that appeared to have collected data on at least one reference standard and at least one index test, and in at least 10 people aged ≥ 65 years, even where no comparative analysis has been published, requesting original dataset so we could create 2 x 2 tables.Data collection and analysis.Diagnostic accuracy of each test was assessed against the best available reference standard for water-loss dehydration (serum or plasma osmolality cut-off≥295mOsm/kg, serumosmolarity or weight change) within each study. For each index test study data were presented in forest plots of sensitivity and specificity. The primary target condition was water-loss dehydration (including either impending or current water-loss dehydration). Secondary target conditions were intended as current (> 300 mOsm/kg) and impending (295 to 300 mOsm/kg) water-loss dehydration, but restricted to current dehydration in the final review.We conducted bivariate random-effects meta-analyses (Stata/IC, StataCorp) for index tests where there were at least four studies and study datasets could be pooled to construct sensitivity and specificity summary estimates. We assigned the same approach for index tests with continuous outcome data for each of three pre-specified cut-off points investigated.Pre-set minimum sensitivity of a useful test was 60%, minimum specificity 75%. As pre-specifying three cut-offs for each continuoustest may have led to missing a cut-off with useful sensitivity and specificity, we conducted post-hoc exploratory analyses to createreceiver operating characteristic (ROC) curves where there appeared some possibility of a useful cut-off missed by the original three.These analyses enabled assessment of which tests may be worth assessing in further research. A further exploratory analysis assessed the value of combining the best two index tests where each had some individual predictive ability.Main resultsThere were few published studies of the diagnostic accuracy of state (one time), minimally invasive clinical symptoms, signs or tests tobe used as screening tests for detecting water-loss dehydration in older people. Therefore, to complete this review we sought, analysed and included raw datasets that included a reference standard and an index test in people aged ≥ 65 years.We included three studies with published diagnostic accuracy data and a further 21 studies provided datasets that we analysed. Weassessed 67 tests (at three cut-offs for each continuous outcome) for diagnostic accuracy of water-loss dehydration (primary targetcondition) and of current dehydration (secondary target condition).Only three tests showed any ability to diagnose water-loss dehydration (including both impending and current water-loss dehydration) as stand-alone tests: expressing fatigue (sensitivity 0.71 (95% CI 0.29 to 0.96), specificity 0.75 (95% CI 0.63 to 0.85), in one study with 71 participants, but two additional studies had lower sensitivity); missing drinks between meals (sensitivity 1.00 (95% CI 0.59 to 1.00), specificity 0.77 (95% CI 0.64 to 0.86), in one study with 71 participants) and BIA resistance at 50 kHz (sensitivities 1.00 (95% CI 0.48 to 1.00) and 0.71 (95% CI 0.44 to 0.90) and specificities of 1.00 (95% CI 0.69 to 1.00) and 0.80 (95% CI 0.28 to 0.99) in 15 and 22 people respectively for two studies, but with sensitivities of 0.54 (95% CI 0.25 to 0.81) and 0.69 (95% CI 0.56 to 0.79) and specificities of 0.50 (95% CI 0.16 to 0.84) and 0.19 (95% CI 0.17 to 0.21) in 21 and 1947 people respectively in two other studies). In post-hoc ROC plots drinks intake, urine osmolality and axillial moisture also showed limited diagnostic accuracy. No test was consistently useful in more than one study.Combining two tests so that an individual both missed some drinks between meals and expressed fatigue was sensitive at 0.71 (95%CI 0.29 to 0.96) and specific at 0.92 (95% CI 0.83 to 0.97).There was sufficient evidence to suggest that several stand-alone tests often used to assess dehydration in older people (including fluid intake, urine specific gravity, urine colour, urine volume, heart rate, dry mouth, feeling thirsty and BIA assessment of intracellular water or extracellular water) are not useful, and should not be relied on individually as ways of assessing presence or absence of dehydration in older people.No tests were found consistently useful in diagnosing current water-loss dehydration.Authors’ conclusionsThere is limited evidence of the diagnostic utility of any individual clinical symptom, sign or test or combination of tests to indicatewater-loss dehydration in older people. Individual tests should not be used in this population to indicate dehydration; they miss a highproportion of people with dehydration, and wrongly label those who are adequately hydrated.Promising tests identified by this review need to be further assessed, as do new methods in development. Combining several tests may improve diagnostic accuracy
Constructing and identifying predictors of frailty among homeless adults—A latent variable structural equations model approach
Homeless urbanites are a heterogeneous population with unique health and social service needs. The study examined situational, behavioral, health-related and resource indicators in terms of their direct impact on frailty, hypothesized as a latent variable. Using structural equation modeling (SEM), a model was tested with 150 homeless men and women, ages 40–73, from three homeless day center drop-in sites on Skid Row and one residential drug treatment (RDT) facility that works with homeless parolees and probationers. In bivariate analyses with the latent construct frailty, months homeless (p < 0.01), female gender (p < 0.05), education (p < 0.05), comorbid conditions (p < 0.001), nutrition (p < 0.001), resilience (p < 0.001), health care utilization (p < 0.01), and falls (p < 0.001) were significantly associated with frailty. In the final path model, significant predictors of frailty included educational attainment (p < 0.01), comorbid conditions (p < 0.001), nutrition (p < 0.001), resilience (p < 0.001), and falls (p < 0.01). These findings will serve as a foundation for future nurse-led, community-based initiatives that focus on key predictors of frailty among the homeless and the development of interventions
Alcohol use and burden for 195 countries and territories, 1990-2016 : a systematic analysis for the Global Burden of Disease Study 2016
Background Alcohol use is a leading risk factor for death and disability, but its overall association with health remains complex given the possible protective effects of moderate alcohol consumption on some conditions. With our comprehensive approach to health accounting within the Global Burden of Diseases, Injuries, and Risk Factors Study 2016, we generated improved estimates of alcohol use and alcohol-attributable deaths and disability-adjusted life-years (DALYs) for 195 locations from 1990 to 2016, for both sexes and for 5-year age groups between the ages of 15 years and 95 years and older. Methods Using 694 data sources of individual and population-level alcohol consumption, along with 592 prospective and retrospective studies on the risk of alcohol use, we produced estimates of the prevalence of current drinking, abstention, the distribution of alcohol consumption among current drinkers in standard drinks daily (defined as 10 g of pure ethyl alcohol), and alcohol-attributable deaths and DALYs. We made several methodological improvements compared with previous estimates: first, we adjusted alcohol sales estimates to take into account tourist and unrecorded consumption; second, we did a new meta-analysis of relative risks for 23 health outcomes associated with alcohol use; and third, we developed a new method to quantify the level of alcohol consumption that minimises the overall risk to individual health. Findings Globally, alcohol use was the seventh leading risk factor for both deaths and DALYs in 2016, accounting for 2.2% (95% uncertainty interval [UI] 1.5-3.0) of age-standardised female deaths and 6.8% (5.8-8.0) of age-standardised male deaths. Among the population aged 15-49 years, alcohol use was the leading risk factor globally in 2016, with 3.8% (95% UI 3.2-4-3) of female deaths and 12.2% (10.8-13-6) of male deaths attributable to alcohol use. For the population aged 15-49 years, female attributable DALYs were 2.3% (95% UI 2.0-2.6) and male attributable DALYs were 8.9% (7.8-9.9). The three leading causes of attributable deaths in this age group were tuberculosis (1.4% [95% UI 1. 0-1. 7] of total deaths), road injuries (1.2% [0.7-1.9]), and self-harm (1.1% [0.6-1.5]). For populations aged 50 years and older, cancers accounted for a large proportion of total alcohol-attributable deaths in 2016, constituting 27.1% (95% UI 21.2-33.3) of total alcohol-attributable female deaths and 18.9% (15.3-22.6) of male deaths. The level of alcohol consumption that minimised harm across health outcomes was zero (95% UI 0.0-0.8) standard drinks per week. Interpretation Alcohol use is a leading risk factor for global disease burden and causes substantial health loss. We found that the risk of all-cause mortality, and of cancers specifically, rises with increasing levels of consumption, and the level of consumption that minimises health loss is zero. These results suggest that alcohol control policies might need to be revised worldwide, refocusing on efforts to lower overall population-level consumption.Peer reviewe
Measuring progress from 1990 to 2017 and projecting attainment to 2030 of the health-related Sustainable Development Goals for 195 countries and territories: a systematic analysis for the Global Burden of Disease Study 2017
Background: Efforts to establish the 2015 baseline and monitor early implementation of the UN Sustainable Development Goals (SDGs) highlight both great potential for and threats to improving health by 2030. To fully deliver on the SDG aim of “leaving no one behind”, it is increasingly important to examine the health-related SDGs beyond national-level estimates. As part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2017 (GBD 2017), we measured progress on 41 of 52 health-related SDG indicators and estimated the health-related SDG index for 195 countries and territories for the period 1990–2017, projected indicators to 2030, and analysed global attainment. Methods: We measured progress on 41 health-related SDG indicators from 1990 to 2017, an increase of four indicators since GBD 2016 (new indicators were health worker density, sexual violence by non-intimate partners, population census status, and prevalence of physical and sexual violence [reported separately]). We also improved the measurement of several previously reported indicators. We constructed national-level estimates and, for a subset of health-related SDGs, examined indicator-level differences by sex and Socio-demographic Index (SDI) quintile. We also did subnational assessments of performance for selected countries. To construct the health-related SDG index, we transformed the value for each indicator on a scale of 0–100, with 0 as the 2\ub75th percentile and 100 as the 97\ub75th percentile of 1000 draws calculated from 1990 to 2030, and took the geometric mean of the scaled indicators by target. To generate projections through 2030, we used a forecasting framework that drew estimates from the broader GBD study and used weighted averages of indicator-specific and country-specific annualised rates of change from 1990 to 2017 to inform future estimates. We assessed attainment of indicators with defined targets in two ways: first, using mean values projected for 2030, and then using the probability of attainment in 2030 calculated from 1000 draws. We also did a global attainment analysis of the feasibility of attaining SDG targets on the basis of past trends. Using 2015 global averages of indicators with defined SDG targets, we calculated the global annualised rates of change required from 2015 to 2030 to meet these targets, and then identified in what percentiles the required global annualised rates of change fell in the distribution of country-level rates of change from 1990 to 2015. We took the mean of these global percentile values across indicators and applied the past rate of change at this mean global percentile to all health-related SDG indicators, irrespective of target definition, to estimate the equivalent 2030 global average value and percentage change from 2015 to 2030 for each indicator. Findings: The global median health-related SDG index in 2017 was 59\ub74 (IQR 35\ub74–67\ub73), ranging from a low of 11\ub76 (95% uncertainty interval 9\ub76–14\ub70) to a high of 84\ub79 (83\ub71–86\ub77). SDG index values in countries assessed at the subnational level varied substantially, particularly in China and India, although scores in Japan and the UK were more homogeneous. Indicators also varied by SDI quintile and sex, with males having worse outcomes than females for non-communicable disease (NCD) mortality, alcohol use, and smoking, among others. Most countries were projected to have a higher health-related SDG index in 2030 than in 2017, while country-level probabilities of attainment by 2030 varied widely by indicator. Under-5 mortality, neonatal mortality, maternal mortality ratio, and malaria indicators had the most countries with at least 95% probability of target attainment. Other indicators, including NCD mortality and suicide mortality, had no countries projected to meet corresponding SDG targets on the basis of projected mean values for 2030 but showed some probability of attainment by 2030. For some indicators, including child malnutrition, several infectious diseases, and most violence measures, the annualised rates of change required to meet SDG targets far exceeded the pace of progress achieved by any country in the recent past. We found that applying the mean global annualised rate of change to indicators without defined targets would equate to about 19% and 22% reductions in global smoking and alcohol consumption, respectively; a 47% decline in adolescent birth rates; and a more than 85% increase in health worker density per 1000 population by 2030. Interpretation: The GBD study offers a unique, robust platform for monitoring the health-related SDGs across demographic and geographic dimensions. Our findings underscore the importance of increased collection and analysis of disaggregated data and highlight where more deliberate design or targeting of interventions could accelerate progress in attaining the SDGs. Current projections show that many health-related SDG indicators, NCDs, NCD-related risks, and violence-related indicators will require a concerted shift away from what might have driven past gains—curative interventions in the case of NCDs—towards multisectoral, prevention-oriented policy action and investments to achieve SDG aims. Notably, several targets, if they are to be met by 2030, demand a pace of progress that no country has achieved in the recent past. The future is fundamentally uncertain, and no model can fully predict what breakthroughs or events might alter the course of the SDGs. What is clear is that our actions—or inaction—today will ultimately dictate how close the world, collectively, can get to leaving no one behind by 2030
Measuring progress from 1990 to 2017 and projecting attainment to 2030 of the health-related Sustainable Development Goals for 195 countries and territories: a systematic analysis for the Global Burden of Disease Study 2017.
BACKGROUND: Efforts to establish the 2015 baseline and monitor early implementation of the UN Sustainable Development Goals (SDGs) highlight both great potential for and threats to improving health by 2030. To fully deliver on the SDG aim of 'leaving no one behind', it is increasingly important to examine the health-related SDGs beyond national-level estimates. As part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2017 (GBD 2017), we measured progress on 41 of 52 health-related SDG indicators and estimated the health-related SDG index for 195 countries and territories for the period 1990-2017, projected indicators to 2030, and analysed global attainment. METHODS: We measured progress on 41 health-related SDG indicators from 1990 to 2017, an increase of four indicators since GBD 2016 (new indicators were health worker density, sexual violence by non-intimate partners, population census status, and prevalence of physical and sexual violence [reported separately]). We also improved the measurement of several previously reported indicators. We constructed national-level estimates and, for a subset of health-related SDGs, examined indicator-level differences by sex and Socio-demographic Index (SDI) quintile. We also did subnational assessments of performance for selected countries. To construct the health-related SDG index, we transformed the value for each indicator on a scale of 0-100, with 0 as the 2·5th percentile and 100 as the 97·5th percentile of 1000 draws calculated from 1990 to 2030, and took the geometric mean of the scaled indicators by target. To generate projections through 2030, we used a forecasting framework that drew estimates from the broader GBD study and used weighted averages of indicator-specific and country-specific annualised rates of change from 1990 to 2017 to inform future estimates. We assessed attainment of indicators with defined targets in two ways: first, using mean values projected for 2030, and then using the probability of attainment in 2030 calculated from 1000 draws. We also did a global attainment analysis of the feasibility of attaining SDG targets on the basis of past trends. Using 2015 global averages of indicators with defined SDG targets, we calculated the global annualised rates of change required from 2015 to 2030 to meet these targets, and then identified in what percentiles the required global annualised rates of change fell in the distribution of country-level rates of change from 1990 to 2015. We took the mean of these global percentile values across indicators and applied the past rate of change at this mean global percentile to all health-related SDG indicators, irrespective of target definition, to estimate the equivalent 2030 global average value and percentage change from 2015 to 2030 for each indicator
Global, regional, and national age-sex-specific mortality and life expectancy, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017
© 2018 The Author(s). Background: Assessments of age-specifc mortality and life expectancy have been done by the UN Population Division, Department of Economics and Social Afairs (UNPOP), the United States Census Bureau, WHO, and as part of previous iterations of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD). Previous iterations of the GBD used population estimates from UNPOP, which were not derived in a way that was internally consistent with the estimates of the numbers of deaths in the GBD. The present iteration of the GBD, GBD 2017, improves on previous assessments and provides timely estimates of the mortality experience of populations globally. Methods: The GBD uses all available data to produce estimates of mortality rates between 1950 and 2017 for 23 age groups, both sexes, and 918 locations, including 195 countries and territories and subnational locations for 16 countries. Data used include vital registration systems, sample registration systems, household surveys (complete birth histories, summary birth histories, sibling histories), censuses (summary birth histories, household deaths), and Demographic Surveillance Sites. In total, this analysis used 8259 data sources. Estimates of the probability of death between birth and the age of 5 years and between ages 15 and 60 years are generated and then input into a model life table system to produce complete life tables for all locations and years. Fatal discontinuities and mortality due to HIV/AIDS are analysed separately and then incorporated into the estimation. We analyse the relationship between age-specifc mortality and development status using the Socio-demographic Index, a composite measure based on fertility under the age of 25 years, education, and income. There are four main methodological improvements in GBD 2017 compared with GBD 2016: 622 additional data sources have been incorporated; new estimates of population, generated by the GBD study, are used; statistical methods used in diferent components of the analysis have been further standardised and improved; and the analysis has been extended backwards in time by two decades to start in 1950. Findings: Globally, 18·7% (95% uncertainty interval 18·4-19·0) of deaths were registered in 1950 and that proportion has been steadily increasing since, with 58·8% (58·2-59·3) of all deaths being registered in 2015. At the global level, between 1950 and 2017, life expectancy increased from 48·1 years (46·5-49·6) to 70·5 years (70·1-70·8) for men and from 52·9 years (51·7-54·0) to 75·6 years (75·3-75·9) for women. Despite this overall progress, there remains substantial variation in life expectancy at birth in 2017, which ranges from 49·1 years (46·5-51·7) for men in the Central African Republic to 87·6 years (86·9-88·1) among women in Singapore. The greatest progress across age groups was for children younger than 5 years; under-5 mortality dropped from 216·0 deaths (196·3-238·1) per 1000 livebirths in 1950 to 38·9 deaths (35·6-42·83) per 1000 livebirths in 2017, with huge reductions across countries. Nevertheless, there were still 5·4 million (5·2-5·6) deaths among children younger than 5 years in the world in 2017. Progress has been less pronounced and more variable for adults, especially for adult males, who had stagnant or increasing mortality rates in several countries. The gap between male and female life expectancy between 1950 and 2017, while relatively stable at the global level, shows distinctive patterns across super-regions and has consistently been the largest in central Europe, eastern Europe, and central Asia, and smallest in south Asia. Performance was also variable across countries and time in observed mortality rates compared with those expected on the basis of development. Interpretation: This analysis of age-sex-specifc mortality shows that there are remarkably complex patterns in population mortality across countries. The fndings of this study highlight global successes, such as the large decline in under-5 mortality, which refects signifcant local, national, and global commitment and investment over several decades. However, they also bring attention to mortality patterns that are a cause for concern, particularly among adult men and, to a lesser extent, women, whose mortality rates have stagnated in many countries over the time period of this study, and in some cases are increasing
Salivary Osmolality, Function, and Hydration Habits in Community-Dwelling Older Adults
The aim of this study was to examine the relationship between hydration status as measured by salivary osmolality and personal hydration habits, selected demographic characteristics, and performance on a walking and balance test in older community-dwelling adults. This study used a descriptive observational design in a convenience sample of multiethnic, community-dwelling older adults ( N = 53). We collected saliva for analysis on 3 days both in the morning and early afternoon, along with a hydration habit questionnaire, get up and go test and demographic information. An exploratory factor analysis of the hydration habit questionnaire revealed a two-factor solution including physical barriers and psychological barriers to drinking fluids. A linear mixed-model approach revealed that time of day ( p < .01), race ( p = .015), mobility ( p < .01), and cognitive barriers ( p = .023) are all significant predictors of salivary osmolality among noninstitutionalized seniors. There is also a significant interaction between psychological barriers to drinking fluids and time of day ( p < .01). Average salivary osmolality was higher in this group of older adults than has been reported in younger adults. Controlling for all other variables, salivary osmolality is higher in the morning than in the afternoon, lower among Black or African American seniors than among White or Caucasian seniors, and higher among seniors with decreased mobility. An interaction between psychological barriers and salivary osmolality showed that those participants with more psychological barriers to drinking had higher salivary osmolality in the morning and an inverse relationship in the afternoon