905 research outputs found
Natural infant-directed speech facilitates neural tracking of prosody
Infants prefer to be addressed with infant-directed speech (IDS). IDS benefits language acquisition through amplified low-frequency amplitude modulations. It has been reported that this amplification increases electrophysiological tracking of IDS compared to adult-directed speech (ADS). It is still unknown which particular frequency band triggers this effect. Here, we compare tracking at the rates of syllables and prosodic stress, which are both critical to word segmentation and recognition. In mother-infant dyads (n=30), mothers described novel objects to their 9-month-olds while infantsâ EEG was recorded. For IDS, mothers were instructed to speak to their children as they typically do, while for ADS, mothers described the objects as if speaking with an adult. Phonetic analyses confirmed that pitch features were more prototypically infant-directed in the IDS-condition compared to the ADS-condition. Neural tracking of speech was assessed by speech-brain coherence, which measures the synchronization between speech envelope and EEG. Results revealed significant speech-brain coherence at both syllabic and prosodic stress rates, indicating that infants track speech in IDS and ADS at both rates. We found significantly higher speech-brain coherence for IDS compared to ADS in the prosodic stress rate but not the syllabic rate. This indicates that the IDS benefit arises primarily from enhanced prosodic stress. Thus, neural tracking is sensitive to parentsâ speech adaptations during natural interactions, possibly facilitating higher-level inferential processes such as word segmentation from continuous speech
A measurement of cosmic ray deuterium from 0.5â2.9 GeV/nucleon
The rare isotopes ^(2)H and ^(3)He in cosmic rays are believed to originate mainly from the interaction of high energy protons and helium with the galactic interstellar medium. The unique propagation history of these rare isotopes provides important constraints on galactic cosmic ray source spectra and on models for their propagation within the Galaxy. Hydrogen and helium isotopes were measured with the balloon-borne experiment, IMAX, which flew from Lynn Lake, Manitoba in 1992. The energy spectrum of deuterium between 0.5 and 3.2 GeV/nucleon measured by the IMAX experiment as well as previously published results of ^(3)He from the same instrument will be compared with predictions of cosmic ray galactic propagation models. The observed composition of the light isotopes is found to be generally consistent with the predictions of the standard Leaky Box Model derived to fit observations of heavier nucle
Cosmic antiprotons as a probe for supersymmetric dark matter?
The flux of cosmic ray antiprotons from neutralino annihilations in the
galactic halo is computed for a large sample of models in the MSSM (the Minimal
Supersymmetric extension of the Standard Model). We also revisit the problem of
estimating the background of low-energy cosmic ray induced secondary
antiprotons, taking into account their subsequent interactions (and energy
loss) and the presence of nuclei in the interstellar matter.
We consider a two-zone diffusion model, with and without a galactic wind. We
find that, given the uncertainties in the background predictions, there is no
need for a primary (exotic) component to explain present data. However,
allowing for a signal by playing with the uncertainties in the background
estimate, we discuss the characteristic features of the supersymmetric models
which give a satisfactory description of the data. We point out that in some
cases the optimal kinetic energy to search for a signal from supersymmetric
dark matter is above several GeV, rather than the traditional sub-GeV region.
The large astrophysical uncertainties involved do not, one the other hand,
allow the exclusion of any of the MSSM models we consider, on the basis of
data.
We present besides numerical results also convenient parameterizations of the
antiproton yields of all `basic' two-body final states. We also give examples
of the yield and differential energy spectrum for a set of supersymmetric
models with high rates.
We also remark that it is difficult to put a limit on the antiproton lifetime
from present measurements, since the injection of antiprotons from neutralino
annihilation can compensate the loss from decay.Comment: 22 pages, 11 figures, uses emulateapj.st
Comparison of 3-Dimensional and 1-Dimensional Schemes in the calculation of Atmospheric Neutrinos
A 3-dimensional calculation of atmospheric neutrinos flux is presented, and
the results are compared with those of a 1-dimensional one. In this study,
interaction and propagation of particles is treated in a 3-dimensional way
including the curvature of charged particles due to the geomagnetic field,
which is assumed to be a dipole field. The purpose of this paper is limited to
the comparison of calculation schemes. The updated flux value with new
interaction model and primary flux model will be reported in a separate paper.
Except for nearly horizontal directions, the flux is very similar to the
result of 1 dimensional calculations. However, for near-horizontal directions
an enhancement of the neutrino flux is seen even at energies as high as 1 GeV.
The production height of neutrinos is lower than the prediction by
1-dimensional calculation for near-horizontal directions, and is a little
higher for near-vertical directions. However, the difference is not evident
except for near-horizontal directions.Comment: 22 pages, 15figure
The Cosmic-Ray Proton and Helium Spectra measured with the CAPRICE98 balloon experiment
A new measurement of the primary cosmic-ray proton and helium fluxes from 3
to 350 GeV was carried out by the balloon-borne CAPRICE experiment in 1998.
This experimental setup combines different detector techniques and has
excellent particle discrimination capabilities allowing clear particle
identification. Our experiment has the capability to determine accurately
detector selection efficiencies and systematic errors associated with them.
Furthermore, it can check for the first time the energy determined by the
magnet spectrometer by using the Cherenkov angle measured by the RICH detector
well above 20 GeV/n. The analysis of the primary proton and helium components
is described here and the results are compared with other recent measurements
using other magnet spectrometers. The observed energy spectra at the top of the
atmosphere can be represented by (1.27+-0.09)x10^4 E^(-2.75+-0.02) particles
(m^2 GeV sr s)^-1, where E is the kinetic energy, for protons between 20 and
350 GeV and (4.8+-0.8)x10^2 E^(-2.67+-0.06) particles (m^2 GeV nucleon^-1 sr
s)^-1, where E is the kinetic energy per nucleon, for helium nuclei between 15
and 150 GeV nucleon^-1.Comment: To be published on Astroparticle Physics (44 pages, 13 figures, 5
tables
Two years of flight of the Pamela experiment: results and perspectives
PAMELA is a satellite borne experiment designed to study with great accuracy
cosmic rays of galactic, solar, and trapped nature in a wide energy range
(protons: 80 MeV-700 GeV, electrons 50 MeV-400 GeV). Main objective is the
study of the antimatter component: antiprotons (80 MeV-190 GeV), positrons (50
MeV-270 GeV) and search for antinuclei with a precision of the order of
). The experiment, housed on board the Russian Resurs-DK1 satellite,
was launched on June, 2006 in a orbit with an
inclination of 70 degrees. In this work we describe the scientific objectives
and the performance of PAMELA in its first two years of operation. Data on
protons of trapped, secondary and galactic nature - as well as measurements of
the December 2006 Solar Particle Event - are also provided.Comment: To appear on J. Phys. Soc. Jpn. as part of the proceedings of the
International Workshop on Advances in Cosmic Ray Science March, 17-19, 2008
Waseda University, Shinjuku, Tokyo, Japa
- âŠ