9 research outputs found

    An Innovative and high-speed technology for sweater monitoring of Asinara Gulf (Sardinia- Italy)

    Get PDF
    Laser induced fluorescenze technique for sea water monitoring allows no-time consuming, non-invasive and non-destructive controls. In this study, the performance of the new shipboard laser spectrofluorometric CAS-PER (Compact and Advanced Laser Spectrometer –ENEA Patent) for monitoring phytoplankton community composition was examined. The prototype CASPER is based on double laser excitation of water samples in the UV (266 nm) and visible (405 nm) spectral region and a double water filtration in order to detect both quantitative data, such as choromophoric dissolved organic matter (CDOM), proteins-like components (tyrosine, tryptophan), algal pigments (chlorophylls a and b, phycoerythrin, phycocyanin, different pigments of the carotenoid groups) and qualitative data on the presence of hydrocarbons and oil pollutants. Sea water samples from different depths have been collected and analyzed from August 2010 through November 2011 in the Gulf of Asinara (N-W Sardinia). Several sampling stations were selected as sites with different degree of pollution. The accuracy and the reliability of data obtained by CASPER have been evaluated comparing the results with other standard measurements such as: Chlorophyll a (Chl a) data obtained by spectrophotometric method and total phytoplankton abundance in terms of density and class composition. Spectral deconvolution technique was developed and integrated with CASPER system to assess and characterize a marker pigments and organic compounds in situ and in vivo. Field studies confirmed CASPER system capability to effectively discriminate characteritistic spectra of fluorescent water constituents, contributing to decrease the time-consuming manual analysis of the water samples in the laboratory

    Caratterizzazione ambientale delle acque del Golfo dell’Asinara (Sardegna) attraverso l’uso di spettrofluorimetria laser e immagini telerilevate

    Get PDF
    The general objective of this research (financed by L.R. 7 of the Autonomous Region of Sardinia for the period May 2010 –May 2012) is to calibrate bio-optical algorithm for more accurate estimates of phytoplanktonic Chl-a in the Asinara Gulf (Northern Sardinia, Italy) using remote sensing data and in situ measurements. The “sea truth” values of Chl-a were obtained with the new laser spectrofluorometric apparatus CASPER (Compact and Advanced laser SPEctrometeR – Patent ENEA). CASPER permitted not only to quantify values of Chl-a but also to detect other algal pigments (phycoerythrin, phycocyanin), chromophoric dissolved organic matter (CDOM), proteins-like components (tyrosine, tryptophan), and qualitative data on the presence of hydrocarbons and oil pollution. At the moment “sea truth” data of Chl-a were just compared to standard chlorophyll products of MODIS OC3 algorithm. In order to reach better results, the bio-optical algorithm is going to be recalibrated according to the measurements of CASPER during the next year, thus providing new estimates of phytoplanktonic Chl-a in the Asinara Gulf

    Double Pulse LIBS Analysis of Metallic Coatings of Fusionistic Interest: Depth Profiling and Semi-Quantitative Elemental Composition by Applying the Calibration Free Technique

    No full text
    In this work we report the characterization of thin metallic coatings of interest for nuclear fusion technology through the ns double-pulse LIBS technique. The coatings, composed of a tungsten (W) or tungsten-tantalum (W-Ta) mixture were enriched with deuterium (D), to simulate plasma-facing materials (PFMs) or components (PFCs) of the next generation devices contaminated with nuclear fuel in the divertor area of the vacuum vessel (VV), with special attention to ITER, whose divertor will be made of W. The double pulse LIBS technique allowed for the detection of D and Ta at low concentrations, with a single laser shot and an average ablation rate of about 110 nm. The calibration free (CF-LIBS) procedure provided a semi-quantitative estimation of the retained deuterium in the coatings, without the need of reference samples. The presented results demonstrate that LIBS is an eligible diagnostic tool to characterize PFCs with high sensitivity and accuracy, being minimally destructive on the samples, without PFCs manipulation. The CF-LIBS procedure can be used for the search for any other materials in the VV without any preliminary reference samples

    Submersible Spectrofluorometer for Real-Time Sensing of Water Quality

    No full text
    In this work, we present a newly developed submersible spectrofluorometer (patent pending) applied to real-time sensing of water quality, suitable for monitoring some important indicators of the ecological status of natural waters such as chlorophyll-a, oil and protein-like material. For the optomechanical realization of the apparatus, a novel conceptual design has been adopted in order to avoid filters and pumps while maintaining a high signal-to-noise ratio. The elimination of filters and pumps has the advantage of greater system simplicity and especially of avoiding the risk of sample degradation. The use of light-emitting diodes as an excitation source instead of Xe lamps or laser diodes helped save on size, weight, power consumption and costs. For sensor calibration we performed measurements on water samples with added chlorophyll prepared in the laboratory. The sensor functionality was tested during field campaigns conducted at Albano Lake in Latium Region of Italy as well as in the Herzliya Harbor, a few kilometers North East of Tel Aviv in Israel. The obtained results are reported in the paper. The sensitivity achieved for chlorophyll-a detection was found to be at least 0.2 µg/L

    A Novel LIBS Sensor for Sample Examinations on a Crime Scene

    No full text
    In this work, we present a compact LIBS sensor developed for characterization of samples on a crime scene following requirements of law enforcement agencies involved in the project. The sensor operates both in a tabletop mode, for aside measurements of swabbed materials or taken fragments, and in handheld mode where the sensor head is pointed directly on targets at the scene. The sensor head is connected via an umbilical to an instrument box that could be battery-powered and contains also a color camera for sample visualization, illumination LEDs, and pointing system for placing the target in focus. Here we describe the sensor’s architecture and functionalities, the optimization of the acquisition parameters, and the results of some LIBS measurements. On nano-plotted traces at silica wafer and in optimized conditions, for most of the elements the detection limits, in term of the absolute element masses, were found to be below 10 picograms. We also show results obtained on some representative materials, like fingerprints, swabbed soil and gunshot residue, varnishes on metal, and coated plastics. The last, solid samples were used to evaluate the depth profiling capabilities of the instrument, where the recognition of all four car paint layers was achieved

    Bio-optical characterization of Asinara Gulf sea water in Sardinia (Italy) using both laser spectrofluorimeter and remote sensing data

    No full text
    The general objective of this research is to calibrate MODIS bio-optical algorithm for better more accurate estimates of phytoplanktonic Chlorophyll a (Chl-a) in the Asinara Gulf (Northern Sardinia, Italy) using and exploring the suitability of the new laser spectrofluorometric apparatus CASPER (Patent ENEA) as a fast and accurate method to obtain “sea truth” values of Chl-a and other biooptical parameters from simultaneous in situ measurements. The accuracy and reliability of data (in particular Chl–a) obtained by CASPER have been evaluated comparing them with standard measurements. CASPER has proved to be a valid instrument also for the investigation of polycyclic aromatic hydrocarbons (PAHs) and oil pollution (dispersed or in film) in water bodies. At the moment “sea truth” data of Chl-a have being compared to the imagery collected by MODIS. But in order to reach better results, the bio-optical algorithm is going to be recalibrated according to the measurements of CASPER, thus providing new estimates of phytoplanktonic Chl-a in the Asinara Gulf

    Proximal Detection of Traces of Energetic Materials with an Eye-Safe UV Raman Prototype Developed for Civil Applications

    No full text
    A new Raman-based apparatus for proximal detection of energetic materials on people, was developed and tested for the first time. All the optical and optoelectronics components of the apparatus, as well as their optical matching, were carefully chosen and designed to respect international eye-safety regulations. In this way, the apparatus is suitable for civil applications on people in public areas such as airports and metro or railway stations. The acquisition software performs the data analysis in real-time to provide a fast response to the operator. Moreover, it allows for deployment of the apparatus either as a stand alone device or as part of a more sophisticated warning system architecture made up of several sensors. Using polyamide as substrate, the apparatus was able to detect surface densities of ammonium nitrate (AN), 2-methyl-1,3,5-trinitrobenzene (TNT), 3-nitrooxy-2,2-bis(nitrooxymethyl)propyl] nitrate (PETN) and urea nitrate (UN) in the range of 100–1000 μg/cm2 at a distance of 6.4 m using each time a single laser pulse of 3 mJ/cm2. The limit of detection calculated for AN is 289 μg/cm2. AN and UN provided the highest percentages of true positives (>82% for surface densities of 100–400 μg/cm2 and fingerprints) followed by TNT and PETN (17%–70% for surface densities of 400–1000 μg/cm2 and fingerprints)
    corecore